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In this work, we define a family of explicit a posteriori error estimators for Finite Vol-
ume methods in computational fluid dynamics. The proposed error estimators are inspired
by the Variational Multiscale method, originally defined in a Finite Element context. The
proposed error estimators are tested in simulations of the incompressible Navier-Stokes
equations, the thermally-coupled Navier-Stokes equations, and the fully-coupled compress-
ible large eddy simulation of the HIFiRE Direct Connect Rig Scramjet combustor.

I. Introduction

Computational fluid dynamics (CFD) is widely applied in the aerospace/automotive/chemical engineer-
ing, power generation, medical research, meteorology or astrophysics. In particular, incompressible or com-
pressible fluid flows are often coupled with thermal engineering, combustion, radiation or multi-phase prob-
lems, among others.

CFD relies on the definition of a mathematical model that describes the fluid motion, from which a
solution is obtained using approximation techniques such as Finite Difference (FD), Finite Volume (FV), or
Finite Element (FE) methods.

The approximated solution, also called numerical solution hereinafter, differs in general from the true
solution. Let φtrue be a quantity (or field) of interest that represents a certain physical phenomenon, e.g. the
velocity field of a fluid. Let φmod be the quantity of interest given by the mathematical model that describes
the physical phenomenon. The numerical solution is computed on a certain mesh, that is a subdivision of
the computational domain into smaller portions of characteristic size, h. We will denote as φh the numerical
solution of the quantity of interest φmod. Following Celik et al.,1 we can distinguish between two types of
error that are responsible of the difference between the true solution and the numerical solution (ε): the
numerical error, εnum, and the model error, εmod.

ε = φtrue − φh = εmod + εnum, (1a)

εnum = φmod − φh, (1b)

εmod = φtrue − φmod. (1c)

The numerical error includes the discretization error (both in space and time), denoted as εdisc, the iter-
ative convergence error, εconv, and round-off error, εroun. In order to determine the error of the numerical
approximation, each source of error should be taken into account, i.e. εnum = εdisc + εconv + εroun. In practical
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situations, the convergence and round-off errors are small and easy to determine, therefore, the numerical er-
ror will be dominated by the discretization error. In what follows, we will not distinguish between numerical
and discretization error, assuming that εnum ≈ εdisc.

From (1a) we see that the true solution is approximated by the numerical solution up to an error, φtrue =
φh + ε. Since, in general, we cannot obtain an exact value of the error, we say that the numerical solution
reproduces the true solution with an uncertainty. The characterization of this uncertainty is crucial to take
decisions in most of the engineering problems, and it is precisely the goal of the uncertainty quantification
(UQ) field.

According to Celik et al.,1 we can distinguish between two different approaches that aim to quantify
the numerical uncertainty. The first approach relies on probabilistic methods, see for instance the work
done by Rebba et al.2 The second approach relies in deterministic methods based on error estimators, see
e.g. Roache3 and Oden et al.4 In this work, we will describe a family of deterministic error estimators to
characterize the discretization error.

Since the first developments on the definition of a posteriori error estimators for FE methods done by
Babuska and Rheinboldt,5 many works have been published over the last few decades. In the work done
by Ainsworth and Oden,6 a wide overview of a posteriori error estimator for FE is given. Other reviews
on a posteriori error estimators can be found, for instance, in Roy7 or Verfurth.8 Hauke and co-workers9

introduced the variational multiscale (VMS) method10 for the a posteriori error estimation of numerical
simulations. This approach was then extended to multi-dimensional transport problems,11 and to the Euler
and Navier-Stokes (NS) equations.12 Recently, a pointwise error estimator based on the VMS error estimators
has also been proposed by Irisarri et al.13 The VMS method was firstly introduced as a stabilization method
in the FE community by Hughes.10 Since then, many contributions have been used this approach in different
contexts, and in particular, to the simulation of turbulent flows, which is the flow type targeted in the current
work. Some examples can be found in Bazilevs et al.,14 Colomés et al.15 or Rasthofer et al.16 In the cited
works, the VMS method is also presented as an Implicit Large Eddy Simulation (ILES) method, which could
open the door to the understanding of the VMS error estimator, not only as a numerical error, but also as
a model error. However, this aspect will not be discussed in this paper.

In this work we will assess the behaviour of VMS error estimators for the fluid flow simulations, but
rather than using the traditional FE discretization, we extend the use of VMS error estimators to the case
of FV methods, starting from the incompressible NS equations, and extending it to the investigation of
thermally-coupled flows and compressible NS equations.

Therefore, the main goal of this work is the definition of a posteriori and non-intrusive error estimators,
based on the VMS methodology, for their application to fluid flow simulations in a FV context. The
paper is structured as follows: first we describe the VMS framework for the incompressible NS equations
in Section II. The definition of the VMS error estimators in a FE context is recalled in Section III, and
followed by its extension in a FV context, as presented in Section IV. Some numerical results are shown
for the incompressible, thermally-coupled and compressible NS equations in Section V. Finally, the overall
conclusions and further work are stated in Section VI.

II. The variational multiscale method

In this section we state the VMS framework for the incompressible NS equations, which will be later used
for the derivation of the VMS error estimators. The extension to thermally-coupled flows can be found in
Codina et al.,17 and, for the compressible NS equations, in Koobus et al .18

Let us consider the spatial domain Ω with boundaries ΓD⊕ΓN = Γ, where ΓD is the Dirichlet (essential)
boundary and ΓN the Neumann (natural) boundary. The strong form of the unsteady incompressible NS
equations reads, find the velocity field, u, and the pressure field, p, such that

∂tu− ν∆u+ u · ∇u+∇p = f in Ω, (2)

∇ · u = 0 in Ω,

u = ug on ΓD,

B(u, p) = h on ΓN ,

where ν is the viscosity, ug a given function defined on the Dirichlet boundary ΓD, h a given function defined
on the boundary ΓN and f the external source term defined in Ω. Furthermore, B(u, p) := (pI +∇su) · n
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is the Neumann boundary operator acting over u and p, which will be defined later. Let us define the NS
operator as

L(u, p) :=

[
Lm(u, p)

Lc(u)

]
,

whereLm(u, p) := ∂tu−ν∆u+u·∇u+∇p is the momentum operator and Lc(u) := ∇·u the incompressibility
constraint operator. The weak form of the problem (2) can be stated as:

Find u ∈ Vg and p ∈ Q such that

B([v, q], [u, p]) = (v, f) + (v,h)ΓN
, ∀v ∈ V0, ∀q ∈ Q, (3)

where B(·, ·) is the bilinear form defined as

B([v, q], [u, p]) := (v,Lm(u, p)) + (q,Lc(u)) + (v,B(u, p))ΓN
, (4)

and the set of variational spaces Vg, V0 and Q are defined as

Vg :=
{
v ∈ H1(Ω) : v|ΓD

= ug

}
≡ H1

g(Ω), (5)

V0 :=
{
v ∈ H1(Ω) : v|ΓD

= 0
}
≡ H1

0(Ω), (6)

Q := L2(Ω)/R. (7)

In (5)-(6) bold characters are used to denote vectorial spaces, i.e. Hm(Ω) := {Hm(Ω)}d, where d is the
number of spatial dimensions.

We consider a finite element partition Th of the domain Ω from which we can construct a conforming
Finite Element (FE) space Vh ⊂ V . Let Eh = ∪K∈Th

∂K be the set of the faces (or edges in 2D) of the mesh
and E0

h = Eh\Γ.
The VMS method10 relies on the decomposition of the variational spaces (5)-(7) into the resolved (FE

solution) and unresolved (error) scales, V0 = V0,h + V ′
0 and Q = Qh + Q′, respectively. Applying this

decomposition to the solution fields u and p, and the test functions v and q, and introducing the result into
(3) we obtain the following problems:

B([vh, qh], [uh, ph]) = −B([vh, qh], [u
′, p′]) + (vh, f) + (vh,h)ΓN

∀vh ∈ V0,h, ∀qh ∈ Qh, (8)

B([v′, q′], [u′, p′]) = −B([v′, q′], [uh, ph]) + (v′, f) + (v′,h)ΓN
∀v′ ∈ V ′

0, ∀q′ ∈ Q′. (9)

Now, problem (9) is defined on an infinite-dimensional space and its solution is not readily computable. Thus,
in order to obtain a solution, we model the subscale component by means of an approximate Green’s function
approach. As initially proposed by Hughes,10 from equation (9), the Green’s function can be approximated
by a model for the flow subgrid time-scales:

u′ ≈ τmP(f −Lm(uh, ph)), (10)

p′ ≈ τcP(−Lc(uh)). (11)

Here P is a certain projection into the subscales space, and τm and τc are approximations to the mean
elemental value of the Green’s functions, namely,

τK
m ≈ 1

meas(ΩK)

∫
ΩK

g′
u(x,y)dΩ, (12)

τKc ≈ 1

meas(ΩK)

∫
ΩK

g′
p(x,y)dΩ. (13)

Various definitions of τm and τc have been proposed.19,20 In this work we will consider the definition of the
stabilization parameter given by Codina,21 which is defined as τm = τmI, with I the identity operator,

τm =

(
c1ν

h2
+

c2|u|
h

)−1

and τc =
h2

c1τm
.

Here c1 and c2 are two algorithmic constants, usually taken as c1 = 4 and c2 = 2.
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Remark. In this work we will only consider the case in which the projection appearing in (10)-(11) is the
identity operator, P ≡ I. This choice is the standard definition used in Hughes,10 and often called algebraic
subgrid scales (ASGS) method, see Codina.22 However, alternative projection definitions can be used. In
the work done by Codina,20 a particular definition of the space of the subscales is considered in a such a
way that V ′ ≈ V⊥

h , i.e. the space of the subscales is considered to be orthogonal to the FE space (OSS)
method. With this choice, less numerical diffusion is introduced compared with the ASGS method while
being equally stable, see Colomés et al.15

Plugging back equations (10)-(11) into (8) we obtain a closed expression for [uh, ph] for which we can
compute the solution

B([vh, qh], [uh, ph])− (L∗
m(vh, qh), τmLm(uh, ph))Ω̃ − (L∗

c(vh), τ cLc(uh))Ω̃
= (vh, f)Ω − (L∗

m(vh, qh), τmf)Ω̃ + (vh,h)ΓN
∀vh ∈ V0,h, ∀qh ∈ Qh, (14)

with L∗
m(v, q) := −ν∆v − u · ∇v − ∇q the adjoint momentum operator and L∗

c(v) := −∇ · v the adjoint

operator of the incompressibility constraint. Note that Ω̃ :=
⋃Nel

K ΩK is the union of all the mesh elements

and Γ̃ :=
⋃Nel

K ΓK\Γ the union of inter-element boundaries that do not lay on the domain boundary.

Remark. In (14), we neglected the effect of the inter-element boundary terms on the subscales, that is, we
assumed v′ = 0 on ΓK in equation (9). As shown by Codina et al ,23 these terms do not affect the accuracy
of the solution, and they are only crucial to guarantee stability when discontinuous pressure interpolations
are used.

III. Variational multiscale error estimators

The VMS framework also allows us to define estimates of the error, since the subscale can be thought of as
the error associated with the coarse scale approximation of the velocity and pressure fields, eu = u′ = u−uh

and ep = p′ = p − ph, respectively. Next, we recall the definition of error estimators based on the VMS
method in the work done by Hauke et al.12

From (9), using the Green’s function as proposed in Hughes,10 we can obtain an analytical expression
for the subscales u′ and p′ as

u′(x) =−
∫
Ω̃

g′
u(x,y)(Lm(uh)− f)(y)dΩ−

∫
Γ̃

g′
u(x,y)(JB(uh, ph)K)(y)dΓ

−
∫
ΓN

g′(x,y)(B(uh, ph)− h)(y)dΓ, (15)

p′(x) =−
∫
Ω̃

g′
p(x,y)(Lc(uh))(y)dΩ. (16)

In equations (15)-(16), we can distinguish the contribution from the element interior integrals and the element
boundaries integrals and decompose the subscales as the sum of the element interior and the inter-element
boundary contributions

u′ = u′
K + u′

∂K , (17)

p′ = p′K + p′∂K , (18)

with

u′
K(x) = −

∫
Ω̃

g′
u(x,y)(Lm(uh)− f)(y)dΩ, (19)

u′
∂K(x) = −

∫
Γ̃

g′
u(x,y)(JB(uh, ph)K)(y)dΓ−

∫
Γ

g′(x,y)(B(uh, ph)− h)(y)dΓ, (20)

p′K(x) = −
∫
Ω̃

g′
p(x,y)(Lc(uh))(y)dΩ, (21)

p′∂K(x) = 0. (22)
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For a certain norm, ‖ · ‖Lr(Ω), with r ∈ N, we can find an upper bound for the subscales norm making use
of the triangle inequality in the subscale decomposition (17)-(18):

‖u′‖Lr(Ω) ≤ ‖u′
K‖Lr(Ω) + ‖u′

∂K‖Lr(Ω), (23)

‖p′‖Lr(Ω) ≤ ‖p′K‖Lr(Ω) + ‖p′∂K‖Lr(Ω). (24)

Therefore, a bound of the error (subscales) can be derived by bounding both the interior and the inter-element
boundary subscale contributions. Starting from the exact equations (19) and (21), taking the absolute value
of each component, applying the Hölders inequality and applying the Green’s function norm, we arrive to
the following estimate (see Hauke et al.12 for details)

‖u′
K‖Lr(K) ≤ meas(K)1/rτ+

m,Lr‖(Lm(uh)− f)‖L∞(K), (25)

‖p′K‖Lr(K) ≤ meas(K)1/rτ+c,Lr‖(Lc(uh))‖L∞(K), (26)

with τ+ij = maxK(0, τij). In this work we will focus on the L2-norm of the error, from which the time-scale

parameters take the following expression: τm,L2 = min
(

h√
3|uh|

, h2

24.24ν

)
, and τc,L2 =

h2
c

4τm
, with hc as defined

in Hauke et al.12 The inter-element boundaries error will be bounded by the following expression

‖u′
∂K‖Lr(K) ≤ meas(K)1/rτ+

m,Lr

1

2

meas(∂K)

meas(K)
‖JB(uh, ph)K‖L∞(∂K). (27)

Here we consider only the L2-norm (r = 2), but other choices are possible, see Hauke.24 In this case, the
final expression for the VMS error estimator reads

ηK,u = meas(K)1/2τ+
m,L2

(
‖f −Lm(uh, ph)‖L∞(K) +

1

2

meas(∂K)

meas(K)
‖JB(uh, ph)K‖L∞(K)

)
, (28)

ηK,p = meas(K)1/2τ+c,L2

(
‖Lc(uh)‖L∞(K)

)
. (29)

Remark. The inter-element boundaries errors do not play a relevant role for convection dominated problems.

IV. VMS error estimators in a Finite Volume framework

In this section we consider the extension of the VMS error estimators for the Navier-Stokes equations
into a FV framework. In order to keep the problem simple, here we will consider only the interior element
contribution of the simplified VMS version of the error estimator, i.e.,

ηK,u = meas(K)1/2τ+
m,L2

(
‖f −Lm(uh, ph)‖L∞(K)

)
, (30)

ηK,p = meas(K)1/2τ+c,L2

(
‖Lc(uh)‖L∞(K)

)
. (31)

Note that this simplification is valid when high Reynolds numbers are used, which is the case of main interest
for us. The expression of ηK,u and ηK,p for the NS equations depend on the L∞-norm of the momentum
and continuity residuals, respectively, which are given by

Rm(uh, ph) = f −Lm(uh, ph) = f − [∂tuh − ν∆uh + uh · ∇uh +∇ph] , (32)

Rc(uh) = −Lc(uh) = −∇ · uh. (33)

In a FV context, we assume that the residual is piecewise constant, i.e. constant over each cell. Under this as-
sumption we have that for any cell K, the L∞-norm is equivalent to the L1-norm, i.e. ‖ · ‖L∞(K) ≡ ‖ · ‖L1(K).

Moreover, also assuming piecewise constant residuals, we have thatRm(uh, ph)|K ≡ 1
meas(K)

∫
K
Rm(uh, ph)dΩ.

Thus, on a given cell K of the FV discretization, the L∞-norm of the residuals can be expressed as

‖Rm(uh, ph)‖L∞(K) = |Rm(uh, ph)|K =

∣∣∣∣ 1

meas(K)

∫
K

Rm(uh, ph)dΩ

∣∣∣∣ , (34)

‖Rc(uh)‖L∞(K) = |Rc(uh)|K =

∣∣∣∣ 1

meas(K)

∫
K

Rc(uh)dΩ

∣∣∣∣ . (35)
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Now, using the divergence theorem, we can expand the integral of the momentum residual as follows∫
K

Rm(uh)dΩ =

∫
K

(f − ∂tuh +∇ · [−ν∇uh + uh ⊗ uh + pI]) dΩ

=

∫
K

(f − ∂tuh) dΩ +

∫
∂K

[−ν∇uh + uh ⊗ uh + pI] · n dΓ. (36)

Likewise, the cell integral of the continuity residual can be expressed as∫
K

Rc(uh)dΩ = −
∫
∂K

uh · n dΓ. (37)

Hence, the final expression of the VMS error estimators in a FV framework will be given by

ηK,u = meas(K)1/2τ+
m,L2

∣∣∣∣ 1

meas(K)

(∫
K

(f − ∂tuh) dΩ +

∫
∂K

[−ν∇uh + uh ⊗ uh + pI] · n dΓ

)∣∣∣∣ , (38)

ηK,p = meas(K)1/2τ+c,L2

∣∣∣∣ 1

meas(K)

(
−
∫
∂K

uh · n dΓ

)∣∣∣∣ . (39)

In this work, the numerical results obtained using a FV method will be computed in a staggered Cartesian
grid. In this case, the pressure unknowns are located at the centre of the cell and the velocity components at
the centre of the faces normal to each component (see Figure IV, where a 2D sketch of the FV discretization
is depicted, with the notation uh = [u, v]T ). Since the FV method is a collocation method, the evaluation of

u(i-1,j-2) u(i-1,j-1) u(i-1,j) u(i-1,j+1)

u(i,j) u(i,j+1)

u(i+1,j-1) u(i+1,j) u(i+1,j+1)

p(i-1,j-1) p(i-1,j) p(i-1,j+1)

p(i,j-1) p(i,j) p(i,j+1)

p(i+1,j)

v(i-1,j-1) v(i-1,j) v(i-1,j+1)

v(i,j) v(i,j+1)

v(i+1,j-1) v(i+1,j) v(i+1,j+1)

v(i-2,j-1) v(i-2,j) v(i-2,j+1)

u(i,j-1)u(i,j-2)

p(i+1,j+1)

u(i+1,j-2)

v(i,j-1)

p(i+1,j-1)

Figure 1. A staggered grid stencil.

the residuals at the collocated points will give a null residual by definition. Therefore, we need to compute
the residuals at different collocation points. The velocity error estimator is evaluated at the cell centre for
both components, while the pressure error estimator is evaluated at the cell corners.

With this setting, the first integral appearing in equation (38) is evaluated multiplying the cell volume
by the quantities evaluated at the cell centres. For this first integral term, the external force term is already
defined at the cell centres, while the time derivative of the velocity is evaluated by averaging the velocity
values at the faces. For the second term (39), the velocity values and gradients are evaluated at the cell faces,
and the pressure is obtained taking an average over the cells adjacent to a face. This second integral term
represents a centered evaluation of the residual, because of the structure of the boundary integral (Gauss
theorem).

Remark. It can be shown, see [25, Appendix B], that under the following conditions, a FV discretization
can be interpreted as a FE discretization:

• The FE space is defined through Raviart-Thomas elements of order 0, i.e. quadrilateral/hexahedra
elements with constant pressure and the velocity unknowns defined on the normal component of each
face.
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• The viscous fluxes are computed using the velocity gradient as an auxiliary variable.

• Time integration is performed with a specific combination of trapezoidal and midpoint rules.

V. Numerical results

In this section we aim to demonstrate the applicability of the VMS error estimators in a FV framework
and assess its performance for different flow types. The accuracy and robustness of the VMS error estimators
for the compressible NS equations have been successfully conducted in Hauke et al .12

Although the main goal of this work is the assessment of such error estimators in a FV framework, a
first analysis for the steady incompressible NS equations in a FE context will be carried out. Afterwards,
a thermally-coupled incompressible flow is tested with a Rayleigh-Bénard convection between a hot and
cold walls. Finally, the error estimators are tested for a simplified version of a Scramjet combustor with a
compressible NS formulation.

Although the VMS error estimator has been defined for all the fields appearing in the NS equations, here
we will focus on the error of the velocity field, ηK,u.

V.A. Incompressible flow

In order to test the accuracy and robustness of the proposed error estimators, we solve the steady incompress-
ible Navier-Stokes equations in a Finite Element framework, using FEMPAR.26 A first study is performed
for a test with a manufactured analytical solution, in which we impose a forcing term such that the solution
satisfies the following analytical expression

ux(x, y) = x3y2, (40)

uy(x, y) = −x2y3, (41)

p(x, y) = x2 + y2. (42)

The problem is solved using linear quadrilateral elements in a domain Ω = [0, 1] × [0, 1]. The FE
formulation for the incompressible Navier-Stokes equations is unstable when linear interpolation is used for
both velocity and pressure. To overcome these instabilities, a VMS formulation is used for the purpose of
numerical stability, see the work done by Hughes.10

A refinement analysis is performed to assess the convergence rate of the error estimator for three different
Reynolds numbers Re = {1.0e2, 1.0e3, 1.0e4}. The error of the FE method should decay with a 2nd order
rate when refining the mesh (O(h−2)). In Figure 2 we see that the global estimated error converges following
this rate for the three cases.

(a) Re = 100. (b) Re = 1, 000. (c) Re = 10, 000.

Figure 2. Error estimator convergence in a manufactured analytical solution for different Reynolds number.

The VMS error estimators are local, allowing us to identify the regions in which the error is higher, and
based on that, an adaptive refinement strategy could be used to efficiently reduce the global error. In Figure
3 we depict the exact and estimated velocity error values for the case of Re = 1.0e4 in a 322 quadrilateral
elements mesh. The VMS estimator captures the regions in which the exact error is greater, although the
error is overestimated. Note that the same color scale has been used for the exact and estimated errors
(Figure 3(b) and Figure 3(c)).
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(a) Velocity field. (b) Exact error. (c) Estimated error.

Figure 3. Velocity field, and exact and estimated velocity error in a 322 elements mesh for a Reynolds number
Re = 10, 000.

A widely used benchmark test for the validation of numerical approximations of the incompressible NS
equations is the driven cavity flow, solved in a domain Ω = [0, 1] × [0, 1], imposing an horizontal velocity
ux = 1.0 at the top side and homogeneous Dirichlet boundary conditions on the remaining edges. The
problem is solved with a Reynolds number Re = 100. A mesh of 322 quadrilateral elements has been used
for this test. The results of the velocity field and the estimated velocity error are depicted in Figure 4. In this
case, we do not have an analytical solution of the velocity field and, therefore, we cannot compare against
the exact error. However we see that the estimated error is accumulated at the top corners, where higher
velocity and pressure gradients are expected.

(a) Velocity field. (b) Estimated error.

Figure 4. Velocity field and estimated velocity error in a 322 elements mesh for the cavity flow with a Reynolds number
Re = 100.

V.B. Thermally coupled incompressible flow

One of the goals of this work is to demonstrate that the VMS error estimators can be applied in a variety
of flow types and that can be implemented in a Finite Volume context. As it has been developed in Section
IV, to obtain the VMS error estimator ηK,u at any cell K in a FV context, we need to evaluate the cell
volume (meas(K)), the time-scale parameter (τ+m,L2) and the integral over the cell of the momentum equation
residual.

The expression of ηK,u for the thermally coupled Navier-Stokes equations is basically the same as (38),
but with the difference on the definition of the residual, which in that case reads

Rm(uh, ph, θh) = f + αgθ0 − [∂tuh − ν∆uh + uh · ∇uh +∇ph + αgθh] , (43)
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where θh is the temperature field, α the thermal expansion coefficient, g the gravity acceleration vector and
θ0 the reference temperature. In a staggered FV grid, the temperature field is collocated at the cell centers,
like the pressure field (see Figure IV).

Introducing the residual expression (43) into (30), and following the reasoning developed in Section IV,
we obtain an equivalent expression for the velocity VMS error estimator that reads

ηK,u = meas(K)1/2τ+
m,L2

∣∣∣∣ 1

meas(K)

(∫
K

(f + αg(θ0 − θh)− ∂tuh) dΩ

+

∫
∂K

[−ν∇uh + uh ⊗ uh + pI] · n dΓ

)∣∣∣∣ . (44)

In order to showcase the performance of the VMS error estimator for a thermally coupled flow, we solve
the well known Rayleigh-Bénard flow between a hot and a cold walls, in a periodic domain as sketched in
Figure 5. The physical parameters and the domain setting for this test are summarized in Table 1.

Figure 5. Rayleigh-Bénard test configuration.

Table 1. Parameter setting for the Rayleigh-Bénard flow
test

Parameter Value

Domain size in x-direction 2.0

Domain size in y-direction 1.0

Rayleigh number 5.0 · 105

Prandtl number 0.7

Temperature of the bottom wall 1.0

Temperature of the top wall −1.0

Time step size 1.0 · 10−2

In the Rayleigh-Bénard flow simulation, because
of the buoyancy phenomena, the initial condition
is unstable. This physical instability leads to the
formation of convection cells, that after enough time
take the form of regular recirculation patterns. In
the following figures we plot the state of the flow at
different times: at t = 5, at the onset of buoyant
instabilities near the boundaries, t = 15, when the
flow is fully developed, and t = 40, when buoyant
recirculating cells are formed. The results shown
here are computed using a Cartesian mesh of 160×
80 cells.

Since the VMS error estimator uses as an input
the computed velocity, temperature and pressure fields, we will first show the state of this quantities at
the prescribed times. In Figure 6, we plot the temperature and pressure fields. Note that the temperature
bounds in Figure 6(a), Figure 6(b) and Figure 6(c) are lower than the actual boundary values, θh = 1.0 and
θh = −1.0 at the bottom and top walls, respectively. This is caused by the fact that the temperature and
pressure fields are evaluated at the cell centers, and we plot the values in such locations. In Figure 6 we can
clearly distinguish the different stages of the flow, where initially, only the flow near the boundary is starting
to develop (Figure 6(a) and Figure 6(d)). At t = 15 the variations in pressure and temperature have not yet
developed the patterns of recirculating cells (Figure 6(b) and Figure 6(e)). Finally, at t = 40 (Figure 6(c)
and Figure 6(f)) the flow evolves to a regular recirculation pattern.

In Figure 7 we plot the x- and y-components of the velocity. Note that each velocity component is
collocated and stored in correspondence of a normal cell face. In particular, since this test is solved on a
Cartesian grid, we store the velocity in the x-direction along the vertical faces and the velocity in the y-
direction along the horizontal faces. The same behaviour is observed in this figure, where at the initial times
(Figure 7(a) and Figure 7(d)) the higher velocity values are concentrated near the boundary. At t = 15,
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(a) Temperature, t = 5. (b) Temperature, t = 15. (c) Temperature, t = 40.

(d) Pressure, t = 5. (e) Pressure, t = 15. (f) Pressure, t = 40.

Figure 6. Temperature and pressure fields at the cell centers at different times.

global flow features can be seen in Figure 7(b) and Figure 7(e). Finally, looking at Figure 7(c) and Figure
7(f), a regular recirculation pattern is observed.

(a) Velocity (x), t = 5. (b) Velocity (x), t = 15. (c) Velocity (x), t = 40.

(d) Velocity (y), t = 5. (e) Velocity (y), t = 15. (f) Velocity (y), t = 40.

Figure 7. Velocity field components at the cell faces at different times.

Once we have the velocity, temperature and pressure fields, we can evaluate the velocity error estimator,
the magnitude of which is depicted in Figure 8. As expected, initially the estimated numerical error is
concentrated at the boundaries, where the flow starts developing. When the flow is fully developed, we see
that the estimated error is distributed over the whole domain. As more steady recirculating patterns develop,
the error is concentrated near upwelling and downwelling jets. Note that at the center of the convection cell
(Figure 8(c)) the error is very low, because the flow is nearly quiescent in that region.

In Figure 9 we depict the evolution of the global error estimator, integrated over all the domain, for
three different grids constructed through two consecutive uniform refinements. As we can see, the error is
increased as the flow starts to develop, achieving a stationary value when the convection cells are generated.
We can also observe that the error magnitude decays at least quadratically as the grid is refined.
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(a) ηu, t = 5. (b) ηu, t = 15. (c) ηu, t = 40.

Figure 8. Estimated error field at the cell centers at different times.

Figure 9. Error estimator ηu evolution over time for different discretizations.

V.C. Scramjet combustor simulation

As a last test, we apply the VMS error estimators to a more realistic and complex problem such as the
simulation of a Scramjet combustor, related to the Hypersonic International Flight Research Experiment
(HIFiRE).27,28 In particular, a simplified version of the HIFiRE Direct Connect Rig (HDCR)29 (Figure
V.C) is considered in this section.

4 

 

three dimensional view of the HDCR model and a close-up of the instrumentation package as installed in 
the AHSTF is given in Figure 3.  The model is instrumented with 144 pressure taps, 23 thermocouples, 
and 4 heat flux transducers along the flowpath.  The pressure taps were placed along the centerline of 
the flowpath and across several span wise locations.  Thirteen thermocouples and all heat flux 
transducers were offset by 0.75” from the centerline for either the cowl or the body side walls.  Six 
thermocouples (3 for the port side and 3 for the starboard side) were placed along the sidewalls and 4 
thermocouples were placed on the outer mold line (OML).  A complete summary of the sensor 
arrangement is found Appendix C.  To orient the reader (see Figure 4), the flowpath starts at axial station 
x=0.0” (which corresponds to the facility nozzle exit/isolator entrance), the base of the pilot cavity is at 
x=11.58”, the beginning of the ramp/cavity closeout is at x=14.15”, and the end of the ramp/cavity 
closeout is at x=15.79”.  Fueling can be provided at x=7.60”, 9.60”, 11.92”, 16.5”, and 19.75”. 

 

     
 

Figure 3. Three dimensional view of the HDCR instrumentation layout and a close-up view as 
installed in the AHSTF. 

 
 
 

 

Figure 4.  Approximate axial locations for HDCR temperature or heat flux sensors. 

 
  

Figure 10. HDCR geometry given in Cabell et al.29

We solve the problem in two dimensions, with a geometry as indicated by the blue lines in Figure 11(b).
The flow travels from left to right (along the x direction), and there are two different fuel injectors, the
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primary on the left side of the cavity with an angle of 15◦, and a secondary injector after the cavity. A
simple geometry without cavity will be considered (as shown in Figure 11(b)), where only the primary
injector is contemplated. In that case the chemistry is initially disabled, allowing a targeted investigation of
the interaction between the fuel jet and the supersonic crossflow without the effects of combustion reaction.

10
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(a) HDCR two-dimensional geometry.

(b) Simplified two-dimensional geometry

Figure 11. Two-dimensional geometry used in the simulations.

Table 2. Parameter setting for the Scramjet combustor test

Parameter Value

Dynamic Viscosity 36.4 · 10−6 Pa · s
Bulk Velocity 1340 m/s

Speed of Sound 533m/s

Reynolds Number 189, 000

Prandtl Number 0.693

The resolution of this problem is carried out
using RAPTOR, a FV software developed by Oe-
felein,30 solving the fully-coupled conservation equa-
tions of mass, momentum, total-energy, and species
for a chemically reacting flow. A Large Eddy Simu-
lation (LES) model is considered to model the tur-
bulent phenomena, see Oefelein et al .31 Some of the
flow properties used in this simulation are specified
in Table 2, and more details on the inflow conditions
can be found in the work done by Lacaze et al .32

The definition of the VMS error estimator in this case, for the velocity field, is based on the residual of
the full NS momentum equation for compressible flows, which reads

Rm(uh, ph, ρh) = f −
[
∂t(ρhuh)− µ∇ ·

[
(∇uh +∇uT

h )−
2

3
∇ · uhI

]
+ ρhuh · ∇uh +∇ph

]
, (45)

with ρh the density field. With this definition, the equivalent expression for the velocity VMS error estimator
will be given by

ηK,u = meas(K)1/2τ+
m,L2

∣∣∣∣ 1

meas(K)

(∫
K

(f − ∂t(ρhuh)) dΩ

+

∫
∂K

[
−µ

[
(∇uh +∇uT

h )−
2

3
∇ · uhI

]
+ ρh(uh ⊗ uh) + phI

]
· n dΓ

)∣∣∣∣ . (46)

In this case, the velocity VMS error estimator relies on the velocity, pressure and density values obtained
from the resolution of the problem in a FV code. This fields are shown in Figure 12 for the simplest geometry,
computed in a structured grid with 403×32 cells. In this figure we clearly see the shock train generated at the
primary injector position. It can also be observed that the velocity field presents some fluctuations between
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the inlet and the primary injector, coming from the fluctuating velocity imposed at the inlet. Another feature
that we can highlight looking at Figure 12 is the wake that is formed after the primary injector, and can be
more clearly noticed in the horizontal velocity field.

(a) x-component of the velocity field

(b) y-component of the velocity field

(c) Pressure field

(d) Density field

Figure 12. Fields obtained from the FV simulation at a given time

In Figure 13 we depict the value of the VMS error estimators for the velocity field (in the horizontal and
vertical directions) at the same time step as the one at which we have plotted the results shown in Figure
12, both for the simplest geometry case. We can see that the larger error values occur for the x-component,
which is also the component with higher velocity values. Note that the error estimator captures the velocity
fluctuations appearing between the inlet and the first injector, and the shock train after the first injector.
We can also notice higher error values in the wake of the primary injector, where a turbulent boundary layer
is generated.

VI. Conclusions and future work

In this work we have described the extension of the VMS error estimators to a FV framework and applied
to the NS equations, for incompressible, thermally-coupled and compressible conditions.

As an starting point, in Section II, we have described the VMS method in a FE framework for the
incompressible NS equations, allowing us to set the notation that have been used a posteriori. In Section
III we have described the steps followed to obtain an error estimator for the NS equations, which have been
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(a) x-component of the velocity error estimator

(b) y-component of the velocity error estimator

Figure 13. Velocity error estimators in the x (top) and y (bottom) components.

already described in the literature.
Previous contributions can be found in the literature regarding the definition and assessment of the VMS

error estimators for the Navier-Stokes equations in a FE context, but its application to a FV method was
still unexplored. The description of such error estimators in a FV context has been stated in Section IV.
To build the error estimators in a FV framework we have assumed constant residuals over the grid cells and
neglected the inter-element contributions to the error estimator.

A first test has been done using a FE method in which we show that the error estimator gives the
appropriate rates of convergence. We have later applied to a thermally-coupled Rayleigh-Bénard flow between
a hot and cold walls. We have shown that the error estimator is able to capture the locations in which the
flow develops larger variability. We have also shown that the error estimator converges as the grid is refined.

Finally, we have applied the VMS error estimators to a more complex problem, where a simplified version
of a Scramjet combustor is simulated. In this case, we have seen that the error estimator gives higher values
at the initial part of the duct, where higher velocity fluctuations appear, and in the shock train.

Further investigations have to be conducted to assess of the robustness of the VMS error estimators for
the NS equations in a FV framework. Note that the robustness of this error estimators in a FE framework
has been assessed for the compressible NS equations, but its robustness for the incompressible case still
remains unclear.

Furthermore, the application of the VMS error estimators to a full Scramjet problem is still to be done.
Nevertheless, the definition of the VMS error estimators extends naturally to a three-dimensional geometry.
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V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating
equal-order interpolations,” Computer Methods in Applied Mechanics and Engineering, Vol. 59, No. 1, 1986, pp. 85–99.

20Codina, R., “Stabilized finite element approximation of transient incompressible flows using orthogonal subscales,” Com-
puter Methods in Applied Mechanics and Engineering, Vol. 191, No. 39, 2002, pp. 4295–4321.

21Codina, R., “On stabilized finite element methods for linear systems of convectiondiffusion-reaction equations,” Computer
Methods in Applied Mechanics and Engineering, Vol. 188, No. 1, 2000, pp. 61–82.

22Codina, R., “Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales,”
Applied Numerical Mathematics, Vol. 58, No. 3, 2008, pp. 264–283.

23Codina, R., Principe, J., and Baiges, J., “Subscales on the element boundaries in the variational two-scale finite element
method,” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 5, 2009, pp. 838–852.

24Hauke, G., Doweidar, M. H., and Miana, M., “Proper intrinsic scales for a-posteriori multiscale error estimation,”
Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 33, 2006, pp. 3983–4001.

25Calo, V., Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition.
26Badia, S., Mart́ın, A. F., and Principe, J., “FEMPAR: An Object-Oriented Parallel Finite Element Framework,” Archives

of Computational Methods in Engineering, 2017, pp. 1–77.
27Dolvin, D., “Hypersonic International Flight Research and Experimentation (HIFiRE) Fundamental Science and Tech-

nology Development Strategy,” 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,
American Institute of Aeronautics and Astronautics.

28Schmisseur, J. D., “Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermody-
namics,” Progress in Aerospace Sciences, Vol. 72, 2015, pp. 3–16.

29Hass, N., Cabell, K., Storch, A., and Gruber, M., “HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results
from the NASA Langley Arc-Heated Scramjet Test Facility,” 17th AIAA International Space Planes and Hypersonic Systems
and Technologies Conference, American Institute of Aeronautics and Astronautics, 2011.

30Oefelein, J. C., “Large eddy simulation of turbulent combustion processes in propulsion and power systems,” Progress in
Aerospace Sciences, Vol. 42, No. 1, 2006, pp. 2–37.

31Oefelein, J. C., Schefer, R. W., and Barlow, R. S., “Toward Validation of Large Eddy Simulation for Turbulent Combus-
tion,” AIAA Journal , Vol. 44, No. 3, 2006, pp. 418–433.

32Lacaze, G., Vane, Z., and Oefelein, J. C., “Large Eddy Simulation of the HIFiRE Direct Connect Rig Scramjet Combus-
tor,” 55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics.

15 of 15

American Institute of Aeronautics and Astronautics


	Introduction
	The variational multiscale method
	Variational multiscale error estimators
	VMS error estimators in a Finite Volume framework
	Numerical results
	Incompressible flow
	Thermally coupled incompressible flow
	Scramjet combustor simulation

	Conclusions and future work

