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Abstract

In this work we study the performance of some variational multiscale models (VMS) in the large eddy
simulation (LES) of turbulent flows. We consider VMS models obtained by different subgrid scale ap-
proximations which include either static or dynamic subscales, linear or nonlinear multiscale splitting,
and different choices of the subscale space. After a brief review of these models, we discuss some imple-
mentation aspects particularly relevant to the simulation of turbulent flows, namely the use of a skew
symmetric form of the convective term and the computation of projections when orthogonal subscales
are used. We analyze the energy conservation (and numerical dissipation) of the alternative VMS for-
mulations, which is numerically evaluated. In the numerical study, we have considered three well known
problems: the decay of homogeneous isotropic turbulence, the Taylor-Green vortex problem and the tur-
bulent flow in a channel. We compare the results obtained using different VMS models, paying special
attention to the effect of using orthogonal subscale spaces. The VMS results are also compared against
classical LES scheme based on filtering and the dynamic Smagorinsky closure. Altogether, our results
show the tremendous potential of VMS for the numerical simulation of turbulence. Further, we study the
sensitivity of VMS to the algorithmic constants and analyze the behavior in the small time step limit.
We have also carried out a computational cost comparison of the different formulations. Out of these
experiments, we can state that the numerical results obtained with the different VMS formulations (as
far as they converge) are quite similar. However, some choices are prone to instabilities and the results
obtained in terms of computational cost are certainly different. The dynamic orthogonal subscales model
turns out to be best in terms of efficiency and robustness.
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1. Introduction

LES techniques for the numerical simulation of turbulent flows [63] are based on a scale separation
that permits to reduce the computational cost with respect to direct numerical simulation (DNS). Such
scale separation is traditionally achieved by filtering the original Navier-Stokes equations, which leads to
an extra forcing term defined by a physical (functional or structural) model. This widely used approach
is usually referred to as explicit LES [63].

By contrast, implicit LES techniques (ILES) rely on purely numerical artifacts without any modifi-
cation of the continuous problem. This approach was seldom followed, the MILES (Monotone Integrated
LES) approach [13, 30, 35] being the main exception, until the VMS method was introduced [43, 44]
and subsequently proposed as an ILES method (see below). ILES techniques are usually considered to
be based on the addition of purely dissipative numerical terms, see [63, Section 5.3.4]. It is worth to
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emphasize that this is not the case of some particular VMS models, as it is shown in [61] and discussed
below.

VMS was introduced in [43, 44] as a framework for the motivation and development of stabilization
techniques, which aim to overcome numerical difficulties encountered when using the standard Galerkin
method. On the one hand, the velocity and pressure finite element (FE) spaces need to satisfy the
inf-sup compatibility condition that guarantees pressure stability and precludes the use of equal order
interpolation. Mixed methods satisfying this condition can be used and their finite volume counterpart,
based on staggered grids, are common in the LES community. Stabilization techniques that permit the
use of equal order interpolation were proposed, e.g., in [28, 45]. On the other hand, global nonphysical
oscillations appear in the convection dominated regime, when the mesh is not fine enough, that is, for
high mesh Reynolds number flows. The only way to overcome this problem is through the addition of
some form of dissipation which was recognized in the early development of stabilized methods [15]. Let
us note that the common practice in the LES community is to rely on the explicit extra term introduced
by the physical model using high order approximations of the convective term. 1

The first attempts to perform LES using VMS concepts, presented in [46, 48, 47, 53, 51], were
performed introducing explicit subgrid modeling. The VMS models used in these works split resolved
scales into large and small, introducing an explicit LES model to account for the small scales stress tensor,
e.g., a Smagorinsky-type dissipative term acting on the small scales only. As a result, an important
fraction of the degrees of freedom are used for the small resolved scales whereas consistency is retained
in the large resolved scales only.

ILES using a VMS approach with resolved and unresolved subgrid scales (the setting that permits to
recover stabilized formulations) was suggested in [21] and performed in [18, 11, 58]. Excellent results were
first presented in [11], but using isogeometric analysis for the space approximation [42]. Compared to
classical LES based on filtering, the VMS approach does not face difficulties associated to inhomogeneous
non-commutative filters in wall-bounded flows. Further, it retains numerical consistency in the FE
equations and optimal convergence up to the interpolation order whereas, e.g., Smagorinsky models
introduce a consistency error of order h4/3 (see [46, 48, 11]).

Scale separation is achieved in the VMS formalism by a variational projection. The continuous
unknown is split into a resolvable FE component and an unresolvable subgrid or subscale component.
The action of the subscales onto the FE scales can be approximated in different ways, leading to different
VMS models but in all cases these models are residual based (no eddy viscosity is introduced), which
permits to retain consistency. Among the modeling possibilities is the choice of the subscale space,
first discussed in [20], where it was enforced to be L2-orthogonal to the FE space. Another modeling
ingredient is the possibility of considering time-dependent subscales and to keep the VMS decomposition
in all the nonlinear terms, which was studied in [21, 24]. Clear improvements have been observed when
using dynamic and fully nonlinear models for the simulation of laminar flows [24, 4].

In this work we assess implicit VMS models for the numerical simulation of turbulent flows. We
refer to the original references for a comprehensive treatment of the assumptions of the formulations
and their numerical analysis. Our intention here is to compare the different VMS schemes in terms
of quality of the results and computational cost, and discuss some implementation aspects that we
find particularly relevant for the simulation of turbulent flows. Our main motivation is to compare the
influence of using orthogonal subscales, in order to enrich current comparisons on VMS techniques for
large-eddy simulations, such as [31], where only non-projected subscales are considered. We present a
detailed numerical experimentation for three well known problems: the decay of homogeneous isotropic
turbulence (DHIT), the Taylor-Green vortex (TGV) and the turbulent flow in a channel (TCF). Thus,
both unbounded and wall-bounded flows are considered; only wall-bounded tests are performed in [31].
Some other differences with respect to [31] are: 1) we consider a nonlinear sub-scale equation; 2) we
do not include the time step size in the stabilization term; 3) we have analyzed the effect of the skew-
symmetric term.

1It is worth to point out that both problems (convection instability and compatibility conditions) are also present in
the linear Oseen problem. One of the inconsistencies of an explicit LES approach without a numerical dissipation term is
that convection is stabilized by a term that comes from the physical model of the nonlinear Navier Stokes equations and
such a term is not present when the linear Oseen problem is considered.
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The first implementation aspect we discuss is the treatment of the convective term. As it is well-
known, the numerical analysis [8, 16, 37] requires a skew-symmetric form of this term in order to avoid
any positive contribution to the energy estimates that cannot be properly controlled. The construction
of numerical schemes that preserve the skew-symmetry of the convective term at the discrete level has
been long studied in the finite difference and finite volume contexts [2, 69, 32, 68, 26, 66]. However,
FE formulations used to perform VMS-based LES use either the conservative form [46, 53, 11, 17, 18,
31, 34, 56] or the non-conservative one [51, 24, 61]. The approach we follow here is similar to that in
[67] and is based on a split of the convective term into conservative and non-conservative terms. In the
FE (variational) context, this simple approach guarantees the preservation of skew-symmetry at the
discrete level. We remark that in the nonlinear VMS models the convective velocity is discontinuous
(due to the subscale contribution), which prevents us to use some popular skewsymmetric forms. We
also show numerically that a positive energy contribution actually appears if a non skew-symmetric
form is used.

The second point that we address is the use of weighted (by the stabilization parameter) projections
and consistent mass matrices when orthogonal subscales are considered. Even though it is cheaper to use
non-weighted projections and lumped mass matrices, only the use of consistent projections guarantees
exact L2 orthogonality. An alternative is the use of Scott-Zhang projections recently proposed in [5],
although we do not consider this approach here.

We also discuss the influence of the algorithmic constants of the stabilization parameters in the
numerical results. In particular, we show that the choice of the stabilization parameter multiplying the
div-div term has a strong influence on the numerical results while it is not essential for stability and
convergence of the methods. We further analyze the behavior of the VMS formulation as the time step
size is reduced. These two facts are actually related by the way the stabilization parameters are usually
defined (see [31, 41]).

Finally, we compare the results obtained using VMS models against those obtained using classical
LES based on filtering and the dynamic Smagorinsky closure [29], and another implicit LES method,
the adaptive local deconvolution presented in [40].

The article is organized as follows. In Section 2 we present the VMS formulation, how to compute
truly orthogonal subscales and the different models we aim at analyzing, whereas in Section 3 we
discuss energy conservation statements and how they are influenced by the choice of the VMS method
and the definition of the convective term. Sections 5, 6, 7 are devoted to the numerical approximation
of the DHIT, the TGV, and the TCF problems, respectively. Sections 8 and 9 discuss the effect of the
algorithmic constants on the results and the behavior of the different schemes in the small time step
limit. Some remarks close the article in Section 10.

2. Formulation

2.1. Navier-Stokes problem

Let Ω be a bounded domain of Rd, where d = 2, 3 is the number of space dimensions, Γ = ∂Ω its
boundary and [0, T ] the time interval. The strong form of the incompressible Navier-Stokes problem
consists of finding the velocity field u and the pressure field p such that

∂tu− ν∆u + u · ∇u +∇p = f in Ω× (0, T ), (1)

∇ · u = 0 in Ω× (0, T ), (2)

with f the force vector and ν the kinematic viscosity. Hereinafter bold characters denote vectors and
tensors.

Equations (1)-(2) have to be supplied with appropriate boundary and initial conditions. The bound-
ary Γ is divided into the Dirichlet (ΓD) and the Neumann (ΓN ) parts such that ΓD ∪ ΓN = Γ and
ΓD ∩ ΓN = ∅. Then, the boundary and initial conditions can be written as

u = ug on ΓD × (0, T ], (3)

(−pI + ν(∇u +∇uT )) · n = tN on ΓN × (0, T ], (4)

u(x, 0) = u0(x) in Ω× {0}, (5)
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n being the unit outward vector normal to Γ. To simplify the exposition, we will consider ug = 0 and
ΓD = Γ in what follows.

In order to derive the weak form of the problem (1)-(5) we define some notation that will be used
hereafter. We denote by Lp(Ω), 1 ≤ p < ∞, the spaces of functions such that their p-th power is
absolutely integrable in Ω. For the case in which p = 2, we have a Hilbert space with scalar product

(u, v)Ω ≡ (u, v) :=

∫
Ω

u(x) v(x)dΩ (6)

and induced norm ‖u‖L2(Ω) ≡ ‖u‖ = (u, u)1/2. Abusing of the notation, the same symbol as in (6) will
be used for the integral of the product of two functions, even if these are not in L2(Ω), and both for
scalar and vector fields. The space of functions whose distributional derivatives up to order m are in
L2(Ω) are denoted by Hm(Ω). We will focus on the case of m = 1, which is also a Hilbert space. H1

0 (Ω)
is the set of functions in H1(Ω) that have zero trace on Γ. Furthermore, we denote by H−1(Ω) the
topological dual of H1

0 (Ω) and by 〈·, ·〉 the duality pairing between H−1(Ω) and H1
0 (Ω). Given a Banach

space X, Lp(0, T ;X) is the space of time dependent functions such that their X-norm is in Lp(0, T ).
The weak form of the incompressible Navier-Stokes problem (1)-(5) consists, e.g., in finding [u, p] ∈

L2(0, T ;V0)×D′(0, T ;Q0) (distributions in time with values in Q0) such that

(∂tu,v) +B(u; [u, p], [v, q]) = 〈f ,v〉 ∀v ∈ V0, ∀q ∈ Q0, (7)

satisfying the initial condition (5) in a weak sense. Here V0 := H1
0 (Ω)d, Q0 := L2(Ω)/R and the form

B(a; [u, p], (v, q)) is defined as

B(a; [u, p], [v, q]) := ν(∇u,∇v) + b(a,u,v)− (p,∇ · v) + (q,∇ · u) (8)

where the trilinear weak form of the convective term b(u,v,w) can be written in the following three
equivalent ways

b(u,v,w) = (u · ∇v,w) Non conservative, (9)

b(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(v,u · ∇w) Skew-symmetric (type 1), (10)

b(u,v,w) = (u · ∇v,w) +
1

2
(v ·w,∇ · u) Skew-symmetric (type 2). (11)

This equivalence is lost at the discrete level. The skew-symmetric form (type 2) (11) is very common when
numerical analysis are presented [8, 16, 37] but the skew-symmetric form (type 2) (10) has important
advantages when the first argument is a discontinuous function, as will be shown below.

2.2. VMS framework

Let us consider a FE partition Th of the domain Ω from which we can construct conforming finite
dimensional spaces for the velocity V0,h ⊂ V0, and for the pressure Q0,h ⊂ Q0.

The Galerkin FE approximation of (7) consists in finding [uh, ph] ∈ L2(0, T ;V0,h) × D′(0, T ;Q0,h)
such that

(∂tuh,vh) +B(uh; [uh, ph], [vh, qh]) = 〈f ,vh〉 ∀vh ∈ V0,h,∀qh ∈ Q0,h. (12)

It is well known that (12) has numerical instabilities for high mesh Reynolds number problems, i.e.,
when the nonlinear convective term dominates the viscous term. Another drawback of that formulation
is the discrete inf-sup condition that must be satisfied by the pair V0,h ×Q0,h in order to have a well-
posed problem with bounded pressure. These difficulties are overcome by using the VMS approach that
follows.

Let us consider a two-scale decomposition of spaces V0 and Q0 such that V0 = V0,h ⊕ Ṽ0 and

Q = Q0,h ⊕ Q̃0, where Ṽ0 and Q̃0 are infinite-dimensional spaces that complete the FE spaces in V0

and Q0, respectively. Hereinafter the subscript (·)h will denote the FE component and the tilde (̃·) the
subgrid component. Applying the two-scale decomposition to (7) we obtain a discrete problem

(∂tuh,vh) + (∂tũ,vh) +B(a; [uh, ph], [vh, qh]) + (ũ,L∗a(vh, qh))h − (p̃,∇ · vh) = 〈f ,vh〉 , (13)
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where (·, ·)h =
∑
K∈Th(·, ·)K is the sum of scalar products (6) over each element K of the partition Th,

and
L∗a(vh, qh) := −ν∇2vh − a · ∇vh −∇qh (14)

is the formal of the adjoint operator of the momentum equation. The term involving the adjoint operator
comes from an elementwise integration by parts of the terms involving the subscales, in which the
boundary terms (vh, νn · ∇ũ)∂h and (qh,n · ũ)∂h have been neglected (the subscript ∂h is used to
denote the sum over all elements of the integral on the boundary of each element). It also involves
the approximation b(a, ũ,uh) ≈ −(ũ,a · ∇vh) which implies neglecting (vh,n · aũ)∂h and (ũ,∇ · avh).
These approximations are discussed in [24] together with the choice of a which defines the type of scale
splitting (linear or nonlinear), also discussed below.

The discrete problem depends on ũ ∈ Ṽ0 and on p̃ ∈ Q̃0, Ṽ0 and Q̃0 being infinite-dimensional.
Therefore, the equations for ũ and p̃ obtained after applying the two-scale decomposition cannot be
directly solved, but some modeling steps are needed to obtain a feasible method. Considering the subscale
as a time-dependent variable of the problem (see below) and approximating the Navier-Stokes operator
by two stabilization parameters τ−1

m and τ−1
c (see for example [24]), the fine scale problem can be written

as

∂tũ + τ−1
m ũ = P(Ru), (15)

τ−1
c p̃ = P(Rp). (16)

In (15)-(16) P denotes the projection onto the space of subscales, which is discussed below. In turn, the
vector R is the residual of the Navier-Stokes equations (1)-(2), defined as R = [Ru, Rp]

T , with

Ru = f − ∂tuh − La(uh, ph), (17)

Rp = −∇ · uh. (18)

where
La(vh, qh) := −ν∇2vh + a · ∇vh +∇qh (19)

Finally, the expressions of the stabilization parameter τm is

τm =

(
c1ν

h2
+
c2|a|
h

)−1

, (20)

whereas we consider two possible definitions of τc, viz. τc = 0 (which implies p̃ = 0) and

τc =
h2

c1τm
, (21)

where h is the mesh size and c1 and c2 are algorithmic constants. Let us comment on expression (20):

• The influence of the constants c1 and c2 is discussed in Section 8. A theoretical way to determine
them would be to impose that the numerical dissipation they introduce be equal to the molecular
dissipation in turbulent regimes, as explained in [36].

• The definition of τm in (20) is not standard, in the sense that the one used often depends on the

time step size of the time discretization, δt. Instead of (20), τ−1
m = 1

δt + c1ν
h2 + c2|a|

h is more often
considered (see, e.g., [41, 31]). We refer to Section 9 for a more detailed discussion about this
topic. Likewise, other expressions with the same asymptotic behavior in terms of h, ν and |a| can
also be employed.

• Expression (20) corresponds to linear isotropic elements. If elements of order p are used (p is not
the pressure, here), c1 must be replaced by c1p

4 and c2 by c2p. For anisotropic elements, the
definition of h within each element is not obvious. A possibility is explained in [60].

In the following three sections we discuss the particular ingredients of our VMS models. A different
summary can also be found in [23], together with some numerical experiments.

5



2.2.1. The dynamics of the subscales

Stabilized formulations were originally developed for steady convection-diffusion [15] and Stokes
[28, 45] problems. As the numerical instabilities have a spatial nature, the time dependency of the
subscales was not considered, and the standard choice [46, 48, 11] was to take

ũ = τmP(Ru), (22)

that is, to neglect the temporal derivative of the subscales in (15). In this case, the subscales are called
quasi-static in what follows.

The subscale as a time dependent variable of the problem was introduced in [21, 24]. It gives rise to
important properties like commutativity of space and time discretization, stability without restrictions
on the time step size [24, 6] and, combined with orthogonal subscales, to convergence towards weak
solutions of the Navier-Stokes equations [8] and the possibility of predicting backscatter [23, 61].

Equation (15) can be analytically integrated to give

ũ(t∗) = ũ(0) + µ−1(t∗)

∫ t∗

0

µ(t)PRudt, µ(s) = exp

∫ s

0

τ−1(t)dt, (23)

where it is explicitly seen that the subscale is a function of the residual but also of the flow history. In
practice this integration is performed numerically, as described below.

2.2.2. (Non)linear scale splitting

The original VMS formulation [43, 44] was developed having linear problems in mind and its extension
to the Navier-Stokes equations was implicitly based on a “linearization”, fixing the advection velocity
and applying the multiscale splitting to the rest of the terms. A nonlinear scale splitting was used in
[46, 48] together with an explicit resolution of the small scales in which a Smagorinsky damping was
introduced. A nonlinear scale splitting with modeled subscales was used in [21, 11] and in [24], where it
was shown that it leads to global conservation of momentum. We therefore consider both options

a = uh for linear subscales, (24)

a = uh + ũ for nonlinear subscales. (25)

Remark 2.1. When we use the nonlinear definition for the advection velocity, a = uh + ũ, the skew-
symmetric term type 2 (11) in the FE equation (13) reads:

b(a,uh,vh) = ((uh + ũ) · ∇uh,vh) +
1

2
(uh · vh,∇ · uh) +

1

2
(uh · vh,∇ · ũ). (26)

The last term is not well-defined, since it includes derivatives of the discontinuous subscale ũ. One
possibility is to neglect it (as previously done with other similar terms when arriving to (13)), which
implies

b(a,uh,uh) = −1

2
(|uh|2,∇ · ũ), (27)

the same result obtained when the non conservative form is used. By contrast, the skew-symmetric term
type 1 in the FE equation (13) reads

b(a,uh,vh) =
1

2
((uh + ũ) · ∇uh,vh)− 1

2
((uh + ũ) · uh,∇ · vh) (28)

from where
b(a,uh,uh) = 0. (29)

In Subsection (5.2) we will see the influence of the two forms of the convective term on the results. It is
worth noting that the same approximations have been introduced in all cases to implement b(a, ũ,uh),
but these approximations are taken into account in the (usual) energy estimates of Section 3.
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Remark 2.2. At the continuous level, the different expressions of the convective term are also equivalent
to the so called conservation form

b(u,v,w) = −(u⊗ v,∇w).

In the discrete problem, the nonlinear scale splitting leads to the following terms in the momentum
equation:

b(a,uh + ũ,vh) = −(uh ⊗ uh,∇vh)− (uh ⊗ ũ,∇vh)− (ũ⊗ uh,∇vh)− (ũ⊗ ũ,∇vh). (30)

Even if this is not exactly what we get using the non-conservative or skew-symmetric forms because of the
approximation error, this allows us to interpret the different contributions arising from the nonlinear
scale splitting. As it is explained in [23], from (30) we can identify the contributions from the cross
stresses, the Reynolds stresses and the subgrid scale tensor.

2.2.3. The space for the subscales

The selection of the space for the approximation of the subscales determines the projection P ap-
pearing in the right-hand side of (15) and (16). The first option, already considered in [46, 48, 11] and
named Algebraic Subgrid Scale (ASGS) in [20] is to take the subscales in the space of the residuals, that
is,

P := I. (31)

Another possibility introduced in [20] is to consider the space of the subscales orthogonal to the FE
space. The main motivation of the method is that a stability estimate for the projection onto the FE
space of the pressure and/or the convective terms can already be obtained in the standard Galerkin
method and therefore the only “missing” part is the orthogonal one. The Orthogonal Subscales (OSS)
method is then characterized by the following projection definition:

P := Π⊥h = I−Πh, (32)

where Πh is the projection onto the FE space. With this choice, the residual of the momentum equation
does not depend on ∂tuh. Likewise, P(f) in this case is only well defined for f ∈ L2(Ω)d. In the case of
minimum regularity, f ∈ H−1(Ω)d, this term can be simply neglected without upsetting the accuracy
of the method.

In fact, with this choice, the orthogonality between the space of subscales and the FE space is only
guaranteed when the stabilization parameters are constant. If this is not the case, the method is still
optimally convergent [22] but this property is lost. In order to have truly orthogonal subscales, which
guarantees a proper separation of the FE and the subgrid scale kinetic energies (see below and Section
3) a slight modification of the projection Πh is needed (see [22]). We will use two different weighted
projections: one for the velocity subscales (Πm) in (15) and another for the pressure subscales (Πc) in
(16). We define the weighted projections Πm and Πc such that given any vector w ∈ V0 and any scalar
r ∈ Q0 we have

(τmΠm(w),vh) = (τmw,vh) ∀vh ∈ V0,h, (33)

(τcΠc(r), qh) = (τcr, qh) ∀qh ∈ Q0,h. (34)

These definitions guarantee the orthogonality between the FE and subscale spaces in the case of static
subscales, that is, neglecting temporal derivatives in (15). It then follows that the term containing the
temporal derivative of the subscale in the FE equation (13) also vanishes.

However, if the dynamic version of the method is used, the weight of the projection (33) must be
conveniently modified to ensure the mentioned orthogonality. As it can be seen in (23), the definition
of the weight depends on the time integration strategy, as explicitly stated in Section 4.

3. Energy balance statements

In this section we revisit global energy conservation statements of the method. As shown in [61],
similar statements can be obtained locally (in a volume ω ⊂ Ω).
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Taking vh = uh and qh = ph in (13) we have the energy balance on the FE component

1

2
dt‖uh‖2︸ ︷︷ ︸

I

+ ν‖∇uh‖2︸ ︷︷ ︸
II

+ b(a,uh,uh)︸ ︷︷ ︸
III

(35)

+ (∂tũ,uh) + (ũ,L∗a(uh, ph))h − (p̃,∇ · uh)︸ ︷︷ ︸
IV

= 〈f ,uh〉︸ ︷︷ ︸
V

,

In equation (35) we group the terms as

I) FE kinetic energy variation: 1
2dt‖uh‖

2

II) FE viscous dissipation: ν‖∇uh‖2
III) FE convective term: b(a,uh,uh)
IV) FE to SGS energy transfer: εh = (∂tũ,uh) + (ũ,L∗a(uh, ph))h − (p̃,∇ · uh)
V) FE component of external power: 〈f ,uh〉

Multiplying (15) by ũ and (16) by p̃, integrating over the domain and decomposing the residual of the
momentum equation as Ru = f − ∂tuh − La(uh, ph), we obtain the global energy balance on the fine
scale

1

2
dt‖ũ‖2︸ ︷︷ ︸
I

+ τ−1
m ‖ũ‖2︸ ︷︷ ︸
II

+ τ−1
c ‖p̃‖2︸ ︷︷ ︸
III

(36)

+ (P(∂tuh), ũ) + (P(La(uh, ph)), ũ)h + (P(∇ · uh), p̃)︸ ︷︷ ︸
IV

= (P(f), ũ)︸ ︷︷ ︸
V

.

We group the terms in (36) as

I) SGS kinetic energy variation: 1
2dt‖ũ‖

2

II) SGS velocity dissipation: τ−1
m ‖ũ‖2

III) SGS pressure dissipation: τ−1
c ‖p̃‖2

IV) SGS to FE energy transfer: ε̃ = (P(∂tuh), ũ) + (ũ,P(La(uh, ph)))h + (p̃,P(∇ · uh))
V) SGS component of external power: (P(f), ũ)

Finally, adding up equations (35) and (36) we obtain an equation for the total kinetic energy

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 + ν‖∇uh‖2 + b(a,uh,uh) + τ−1

m ‖ũ‖2 + τ−1
c ‖p̃‖2 (37)

+ (∂tũ,uh) + (P(∂tuh), ũ) + (P(La(uh, ph)) + L∗a(uh, ph), ũ)h
+ (P(∇ · uh)−∇ · uh, p̃) = 〈f ,uh〉+ ((P(f), ũ) .

Let us note the presence of b(a,uh,uh), which is zero only when the skew-symmetric type 1 form is
considered. Other choices could result in a spurious positive contribution to the FE kinetic energy as it
is actually observed in the DHIT problem, and could result in a loss of stability, although that was not
observed.

3.1. Static subscales

In this case the energy balance for the subscale is meaningless because there are explicit expressions
for the subscales (22) and (16). When (22) and (16) are used in (35), we obtain

1

2
dt‖uh‖2 + ν‖∇uh‖2 + b(a,uh,uh) + (τmP (∂tuh) ,L∗a(uh, ph))h (38)

+ (τmP (La(uh, ph)) ,L∗a(uh, ph))h + τc ‖P(∇ · uh)‖2

= 〈f ,uh〉+ (τmP(f),L∗a(uh, ph))h .

In the case of the ASGS method, where P := I, the fourth term on the left hand side is a source of
problems. One the one hand, it cannot be neglected because it is needed to make the method consistent.
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On the other hand, it can only be controlled by the dissipation of the time integration scheme and is
therefore responsible for the introduction of a restriction on the time step size. As a side problem, it is
very inconvenient for an implementation if any explicit (operator splitting) time integration is chosen as
it results in a non-symmetric mass matrix. This term is not present if the OSS method is chosen using
the projection P := I−Πh. Stability of both the fully discrete and the semidiscrete Stokes problem have
been proven in [6].

The important term is the fifth one, which permits to control τm ‖P (a · ∇uh +∇ph)‖2; the FE part
in the OSS formulation is readily controlled using inverse estimates. It therefore provides the essential
numerical stability. The last term acts as a penalty on the divergence constraint, adding volumetric
diffusion and provides (extra, non-essential) numerical stability.

For the OSS method, it is proved in [36] that the dissipative structure of the discrete problem has the
same statistical behavior in fully developed turbulence than the continuous problem, in the sense that
this dissipation has the same estimates as the molecular one. Both dissipations could be made equal by
a proper choice of the stabilization parameters in (20). This, however, requires a small change in the
advection velocity of this expression, which depends on an integral length of the problem. See [36] for
details.

3.2. Dynamic subscales

In this case, the time derivative of both the FE and subgrid components have to be considered and
an estimator for the kinetic energy variation of both the FE and subgrid velocity can be obtained. The
stability of the subgrid scale velocity can then be used to obtain a stability estimate of the FE component
in a norm that includes the convective and pressure terms [24, 6, 7].2 Therefore, the numerical dissipation
of the method is actually given by the energy transfer εh from the FE to the subscale component. Using
(15)-(16), we get:

εh = (∂tũ,uh)− (τm∂tũ,L∗a(uh, ph))h − (τmP (∂tuh) ,L∗a(uh, ph))h (39)

− (τmP (La(uh, ph)) ,L∗a(uh, ph))h + τc ‖P∇ · uh‖2 .

Except from the viscous contribution, the last two terms in (39) are positive, providing dissipation of
the FE energy, but the first three could be negative, providing these models with a mechanism to predict
a backward energy transfer, not frequently found in classical LES models [63]. It is justified in [23] that
even if the first three terms may be negative at a certain time instant, their averaged contribution in
a time window greater than the largest period needs to be positive, which is the behavior expected of
backscatter from a physical point of view.

For the ASGS method, i.e., P := I, the last term in the left hand side of (37) vanishes and the
previous one reads

(La(uh, ph) + L∗a(uh, ph), ũ)h = −2 (ν∆uh, ũ)h . (40)

In turn, the time derivatives of the FE and subscale velocities can be combined as

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 + (∂tũ,uh) + (∂tuh, ũ) =

1

2
dt‖uh + ũ‖2 (41)

to rewrite (37) as

1

2
dt‖uh + ũ‖2 + ν‖∇uh‖2 + b(a,uh,uh) (42)

+ τ−1
m ‖ũ‖2 + τ−1

c ‖p̃‖2 − 2 (ν∆uh, ũ) = 〈f ,uh〉+ 〈f , ũ〉 .

From this equation, a stability estimate for ‖uh + ũ‖ can be obtained as the last term on the left hand
side can be controlled using the second one (see [6, Remark 4.7]).

2However, it should be kept in mind that the numerical solution of the problem is the FE component. There is no
reason to add the subscale to the final solution as the approximation is limited by the interpolation order, see [24, Remark
10].
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Another important point of (42) is that it immediately shows that when the mesh is fine enough,
i.e.,

|a|h
ν
� 1,

the dissipation of the total energy depends only on the viscosity. Therefore, the dissipative structure is
correctly predicted when a laminar flow is considered or when the discretization is fine enough to resolve
all scales of the flow, an important advantage over other LES techniques.

On the other hand, for the OSS method, the FE and subgrid kinetic energy can be summed to obtain
the total one

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 =

1

2
dt‖uh + ũ‖2. (43)

since (∂tũ,uh) = (∂tuh, ũ) = 0 as soon as we enforce the subscale to be orthogonal to the FE space.
This property also guarantees that

(Πm(La(uh, ph)), ũ) = 0 (44)

(Πc(∇ · uh), p̃) = 0 (45)

which implies that the last term on the left hand side of (37) vanishes and that the previous one can be
written as

(P(La(uh, ph)) + L∗a(uh, ph), ũ)h = ((La(uh, ph) + L∗a(uh, ph), ũ)h = −2 (ν∆uh, ũ)h (46)

as in the ASGS case. Let us note that the Laplacian term can be eliminated without affecting the
convergence properties of the method. Then, the global energy balance equation (37) reads

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 + ν‖∇uh‖2 + b(a,uh,uh) (47)

+ τ−1
m ‖ũ‖2 + τ−1

c ‖p̃‖2 = 〈f ,uh〉+ (P(f), ũ) ,

which is exactly (42) except for the projection of the force in the last term. Stability and convergence
of this formulation have been proved in [7, 8].

4. Final discrete problem

Applying a time integration algorithm to (13)-(15)-(16) we get the fully discrete problem. The final
implementation of the discrete problem is written here considering a Picard linearization of the convec-
tive term and the Backward Euler (BE) scheme for the time discretization. It can be straightforwardly
modified to consider the Crank-Nicolson time integration scheme; this last scheme is the one used in
the numerical examples of Sections 5, 6 and 7.

4.1. Algebraic Subgrid Scales (ASGS)
Taking the nonlinear advection velocity definition (25) and considering the time derivative in the

fine scales, we have the Dynamic and Nonlinear ASGS method, hereinafter Dyn-Nl-ASGS. At time step
n and nonlinear iteration i, given un,i−1

h , un−1
h , ũn,i−1 and ũn−1 we compute un,ih and pn,ih such that

1

δt
(un,ih ,vh) +B(an,i−1; [un,ih , pn,ih ], [vh, qh]) (48)

+

(
τm,t

[
1

δt
un,ih + Lan,i−1(un,ih , pn,ih )

]
,L∗an,i−1(vh, qh)

)
h

+
(
τc∇ · un,ih ,∇ · vh

)
− 1

δt

(
τm,t

[
1

δt
un,ih + Lan,i−1(un,ih , pn,ih )

]
,vh

)
h

= 〈vh, f〉+
1

δt
(un−1
h ,vh) +

1

δt
(ũn−1,vh)

− 1

δt

(
τm,t

[
1

δt
un−1
h + f +

1

δt
ũn−1

]
,vh

)
+

(
τm,t

[
1

δt
un−1
h + f +

1

δt
ũn−1

]
,L∗an,i−1(vh, qh)

)
h

,
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where τm,t =
(
δt−1 + τ−1

m

)−1
and an,i−1 = un,i−1

h + ũn,i−1.
In turn, ũn,i is computed by solving the discretization of the fine scale problem (15). Note that in

the nonlinear version of the algorithm, the stabilization parameter τm,t depends on the subscale itself
through a in (20), making the fine scale equation also nonlinear, although it is local and does not increase
the size of the global linear system to be solved. At each integration point of each element we iteratively
solve

ũn,i,k = τk−1
m,t

1

δt
ũn−1 + τk−1

m,t

[
f −

(un,ih − un−1
h )

δt
− Lan,i,k−1(un,ih , pn,ih )

]
. (49)

where an,i,k−1 = un,ih + ũn,i,k−1 is used in (20) to obtain τk−1
m,t .

Alternatively, one can send the corresponding fine scale convective term ũ · ∇uh to the left-hand
side, improving the convergence of the iterative process as

ũn,i,k + ũn,i,k · ∇un,ih = τk−1
m,t

1

δt
ũn−1 + τk−1

m,t

[
f −

(un,ih − un−1
h )

δt
− Lun,ih

(un,ih , pn,ih )

]
. (50)

This is a simple fixed-point iterative scheme that we have found efficient and robust for the numerical
simulations presented in this paper, although in other situations we have found more convenient to use
a conventional Newton-Raphson scheme to solve the nonlinear subscale equation [4].

For the simplest ASGS scheme we do not consider the time derivative of the fine scale, we consider
them quasi-static, i.e., (∂tũ,vh) = 0. Note that in any case the subscales will depend on time through
the FE residual and the stabilization parameter. On the other hand, the advection velocity is considered
to be linear as indicated in (24). We label this method as Static Linear ASGS (Sta-Lin-ASGS). Note
that the Sta-Lin-ASGS method does not need to explicitly compute ũ; invoking (20) and (21) in (13)
we get a discrete equation only in terms of the FE component.

We can readily define the rest of possible combinations of time and nonlinear treatment consider-
ing the linear advection velocity definition and the time-dependence in the subscales (Dyn-Lin-ASGS
method) or keeping the static definition of the subscales with the nonlinear choice for the advection
velocity (Sta-Nl-ASGS method).

4.2. Orthogonal Subscales (OSS)

Let us state the Dynamic and Nonlinear OSS (Dyn-Nl-OSS) method, which means to take into
account the nonlinearity of the advection velocity (25) and the time derivative of the subscales. At time
step n and nonlinear iteration i, given un,i−1

h , un−1
h , ũn,i−1 and ũn−1 we compute un,ih and pn,ih by

solving

1

δt
(un,ih ,vh) +B(an,i−1; [un,ih , pn,ih ], [vh, qh]) (51)

+

(
τm,t

[
1

δt
un,ih + Lan,i−1(un,ih , pn,ih )

]
,L∗an,i−1(vh, qh)

)
+
(
τc∇ · un,ih ,∇ · vh

)
= 〈vh, f〉+

1

δt
(un−1
h ,vh)

+

(
τm,t

[
f +

1

δt
ũn−1 − ξn,i−1

m

]
,L∗an,i−1(vh, qh)

)
−
(
τcξ

n,i−1
c ,∇ · vh

)
,

where ξm and ξc are the weighted projections of the residuals Ru and Rp (see below) evaluated at the
corresponding time step and nonlinear iteration.

Like the Dyn-NL-ASGS method, we also need to compute the subscale velocity ũ explicitly. We
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compute the discrete subscale problem with the OSS counterpart of (49) or (50), viz.

ũn,i,k + ũn,i,k · ∇un,ih = τk−1
m,t

1

δt
ũn−1 (52)

+ τk−1
m,t

[
f −

(un,ih − un−1
h )

δt
− Lun,ih

(un,ih , pn,ih )

]
− τk−1

m,t ξ
n,i−1
m .

Note that ξn,im actually depends on ũn,i via the advection velocity of the convective term an,i = un,ih +
ũn,i. In order to simplify the fine scale computation (52) we use the projection at the previous nonlinear
iteration, i.e., ξn,i−1

m .
For the dynamic OSS case we should introduce some modifications in the computation of the pro-

jection Πm. At the fully discrete level, in order for ũn+1 to be L2 orthogonal to Vh, we must add to the
FE residual the subscale time derivative contribution from the previous time step and use τm,t instead
of τm in the computation of the projections. Finally, the projections of the residuals onto the FE spaces
ξn,im and ξn,ic are such that

(τm,tξ
n,i
m ,vh) = (τm,t(R

n,i
u +

1

δt
ũn−1),vh) ∀vh ∈ V0,h, (53)

(τcξ
n,i
c , qh) = (τcR

n,i
p , qh) ∀qh ∈ Q0,h, (54)

where the residuals Rn,i
u and Rn,ip are evaluated using (17) and (18) with an,i = un,ih + ũn,i, un,ih , un−1

h

and pn,ih . Note that when convergence of the nonlinear iteration is achieved, (52) and (53) guarantee
that (vh, ũ

n) = 0 for any vh ∈ V0,h.

5. Decay of homogeneous isotropic turbulence

5.1. Problem definition

This problem, one of the most used benchmarks to test LES models, consists of analyzing the
statistics of the turbulent flow in a 3D box of size Ω = (0, 2π)× (0, 2π)× (0, 2π) with periodic boundary
conditions in all directions, which is started with a field having a predetermined energy spectrum. A
detailed description of the computational domain, initial conditions, and problem setting is given in [55],
which we follow here. A description on the influence of the domain size on the results is given in [49].We
solve this problem using the different VMS models of Section 4 and structured meshes with Nx×Ny×Nz
linear, quadratic and cubic hexahedral elements, taking (Nx, Ny, Nz) = (32, 32, 32), (64, 64, 64) and
(128, 128, 128).

5.1.1. Initial condition

The initial energy spectra [55] is given by

E(k, 0) =
q2

2A
k
−(σ+1)
0 k4 exp

(
−σ

2

(
k

k0

)2
)
, (55)

where k0 is the wave number at which E(k, 0) is maximum, q2/2 = 3/2 is the total kinetic energy,
σ = 4 and A =

∫∞
0
kσ exp(−σk2/2) = 3

32

√
π
2 . Following Rogallo [62], we generate the initial field on

the Fourier space such that it satisfies continuity and has the energy spectrum prescribed in (55). We
finally transform the initial field to the physical space applying the inverse Fast Fourier Transform. We
compare the results against those available in [1], so we set k0 = 6 and the viscosity such that the
associated Taylor-microscale Reynolds number is Reλ = 952, which results in ν = 3.5014006 · 10−4.

5.1.2. Setting

We test the ASGS method and the OSS method reported in Section 4. The problem is solved
considering three different cases for both methods, depending on the definition of the advection velocity
and the tracking of the subscales. The advection velocity a can be linear or nonlinear and the subscales
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Case Id. Label Method Advection velocity (a) Subscales tracking
1 Sta-Lin-ASGS ASGS Linear (a = uh) Static (∂tũ = 0)
2 Dyn-Lin-ASGS ASGS Linear (a = uh) Dynamic (∂tũ 6= 0)
3 Dyn-Nl-ASGS ASGS Nonlinear (a = uh + ũ) Dynamic (∂tũ 6= 0)
4 Sta-Lin-OSS OSS Linear (a = uh) Static (∂tũ = 0)
5 Dyn-Lin-OSS OSS Linear (a = uh) Dynamic (∂tũ 6= 0)
6 Dyn-Nl-OSS OSS Nonlinear (a = uh + ũ) Dynamic (∂tũ 6= 0)

Table 1: DHIT test cases.

can be dynamic or static (see Subsection 2.2). Table 1 collects all the VMS combinations to be compared
for the different simulations.

In terms of the numerical parameters of the methods, we use the skew-symmetric convective term
type 1 defined in Subsection 2.1. The stabilization parameter τc is set equal to zero and the algorithmic
constants in τm are c1 = 12 and c2 = 2 (see Section 8). Further, we use linear, quadratic, and cubic
FEs.

The time integration has been performed using the Crank-Nicolson scheme with an adaptive time
step. The initial time step is set to δt0 = 5.0 · 10−3 and it is increased at each step multiplying it by
an amplification factor. For this test the amplification is equal to 1.1, reading δti = 1.1 · δti−1. The
time step is increased step by step until it reaches a predefined threshold, e.g., 0.1 s. If convergence is
not attained at either the nonlinear or solver loops, we apply a reduction factor (5.0 for this test) and
recalculate the solution using the reduced time step, i.e., δti = 1

5.0δti−1. The amplification of the time
step when the solution converges allows one to decrease the total amount of time steps needed for the
computation. At each time step the nonlinear system is solved as described in Section 4.

5.2. Numerical results

5.2.1. Energy Conservation

In this section we present results of the energy budget described in Section 3 obtained in a 323

elements mesh for the ASGS and OSS methods using the dynamic and nonlinear cases. Fig. 1 depicts
the energy balance evolution for the mean flow equation (35) and the subscale equation (36) separately
for the Dyn-Nl-ASGS case. It can be seen that the variation of kinetic energy shown by the FE component
in Fig. 1(a) is offset in a large part by the transfer of energy to the subscales, while remaining energy
on the mean flow balance is offset by the viscous term. On the other side, Fig. 1(b) shows that the
energy transferred from the FE equation is mainly dissipated by the subscale velocity term. There is an
small variation of the kinetic energy of the subscale at the beginning of the simulation. Note that since
the viscosity is small, so are the viscous effects compared to the dissipation introduced by the subscale
velocity. As we use a skew-symmetric form of the convective term, this term does not affect the energy
balance and is not plotted in Fig. 1(a). Since τc = 0, the pressure subscale term τ−1

c ‖p̃‖2 = τc‖P(∇·uh)‖2
is also zero and does not appear in Fig. 1(b).

The energy balance evolution for the mean flow and the subscales equations in (35)-(36) for the
Dyn-Nl-OSS case are shown in Fig. 2. Fig. 2(a) depicts the energy balance evolution for the mean flow
equation. Like for the ASGS method, the loss of kinetic energy is balanced by the FE scales to subscales
energy transfer terms. The FE viscous term also has a very little impact on the dissipation of energy.
On the other side, the subscales energy balance shown in Fig. 2(b) shows that almost all the energy
transferred by the FE to the subscales is offset by the subscale velocity term, again like in the ASGS
method. The only important difference between both methods is that no oscillations are observed in
the FE kinetic energy evolution when the OSS method is used.

The global energy balance terms obtained solving the problem with the skew-symmetric convective
term type 2 for the Dyn-Nl-ASGS and Dyn-Nl-OSS cases are shown in Fig. 3. We note that the loss of
skew-symmetry in the convective term has a non-negligible effect (see Figs. 3(a) and 3(b)). In particular,
this term introduces negative dissipation (production of energy) into the problem. This fact implies that
the method is less dissipative and the energy decays at a slower rate than using the convective term type
1 and the method seems to be less diffusive. This negative contribution, however, is not predictable and
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Figure 1: Mean flow and subscale energy balances for the Dyn-Nl-ASGS method.
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Figure 2: Mean flow and subscale energy balances the Dyn-Nl-OSS method.

could result in a blow up of the calculation. We refer to Section 8 for further comments about numerical
instabilities associated to the type 2 convective term.

5.2.2. Computational cost analysis

The actual implementation in the parallel FE multiphysics code FEMPAR [9] is based on a classical
domain decomposition strategy. At each nonlinear iteration the monolithic linear system is solved using
a classical GMRES method applied to the Schur complement over the interfaces of the subdomains.
This iterative procedure is preconditioned using a balancing Neumann-Neumann method applied to the
monolithic system. The cost of each iteration is that of local Dirichlet solves for the Schur complement
application and a local Neumann solve and a global solve for the preconditioner application (see [54,
27, 10]). All local systems are solved using the sparse direct solvers in PARDISO library [64, 65].

An important issue when comparing different computational methods is their corresponding com-
putational cost. In order to characterize the performance of the different VMS methods introduced in
Section 2, we analyze some quantities that define the computational cost of each method, viz. nonlinear
iterations, iterative solver iterations, and the adaptive time step evolution.

The cases compared here have been solved using 323 and 643 linear hexahedral element meshes. The
323 discretization is very coarse but it allows us to stress the differences between the proposed methods.
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(a) Global energy balance for Dyn-Nl-ASGS
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(b) Global energy balance for Dyn-Nl-OSS

Figure 3: Global energy balance using skew-symmetric convective term type 2.

In fact, due to this discretization, the linear and static ASGS case (Sta-Lin-ASGS) and the dynamic and
linear ASGS case (Dyn-Lin-ASGS) do not converge at t = 0.0 and t = 0.123, respectively; the nonlinear
iterations diverge even reducing the time step size. Anyway, all the methods converge as h→ 0.

The number of nonlinear iterations needed at each time step by the ASGS method is smaller than
the one required by the OSS method in all cases. This is due to the evaluation of the projections at
the previous nonlinear iteration i − 1; the implicit treatment of the projection is carried out by the
nonlinear loop. Alternatively, since the projection is a linear operation, it can be performed together
with the linear system [22], although a more involved implementation is required. Referring to the OSS
method, we observe that the dynamic cases, both linear and nonlinear, need less iterations to achieve
convergence without any significant difference between each other.

However, the number of nonlinear iterations is not the most relevant measure of the computational
cost as the cost of each iteration is not fixed when iterative linear solvers are considered. Fig. 4 shows
the accumulated number of solver iterations for each time step for the methods that have attained
convergence with the 323 mesh (Fig. 4(a)) and for the dynamic versions with the 643 mesh (Fig. 4(b)).
Unlike the nonlinear iterations, here we see that the ASGS method requires more solver iterations than
OSS. The maximum solver iterations at each time step for the dynamic and nonlinear ASGS case is
variable, starting from near 600, dropping to 200 and rising to around 300 iterations at the end of the
computation. Meanwhile, all cases of the OSS method remain almost constant, around 60 iterations in
the dynamic cases and around 40 iterations in the static one. The relation between time step size and
solver iterations for each method is analyzed in Section 9.

The adaptive time stepping described in the previous subsection has an important role on the
computational cost, as mentioned earlier. If the time step is reduced in order to ensure convergence,
the global computational cost is increased. Then, we are looking for those methods that do not require
time step reductions, consequently reducing the total amount of time step evaluations. In this case,
any of the methods shown in Fig. 4(a) need to reduce the time step. Since we do not have any time
step reduction and the number of solver iterations per step is stabilized after t = 1 for the 323 mesh
and t = 1.5 for the 643 mesh, the total amount of accumulated solver iterations (in nonlinear and time
loops) shown in Fig. 4 increases almost linearly. We see in this figure that the ASGS scheme performs
worse than OSS in this aspect, with a steeper slope in both the 323 and the 643 meshes. With respect
to the OSS method, we see that the number of nonlinear iterations needed by the static version of this
method results in a steeper slope of the accumulated solver iterations. No significant differences appear
between the dynamic linear and nonlinear definitions of the OSS method.

Summarizing, ASGS methods need less nonlinear iterations (due to the treatment of the projections
in the OSS method), but on the other hand OSS methods need less solver iterations. Furthermore,
ASGS formulations are prone to instabilities; linear formulations diverge and the nonlinear dynamic
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Figure 4: Accumulated solver iterations.

formulation requires much more solver iterations.
We can clearly state that the most efficient method for this setting, in terms of computational cost,

is the dynamic (both linear and nonlinear) OSS method; all OSS cases are below ASGS. It has to be
said that the dynamic nonlinear OSS case requires less nonlinear iterations in some of the time step
computations.

5.2.3. Total energy evolution

In this section we present the total energy evolution of the resolved scales, i.e., the FE component.
The results are shown in Fig. 5 for the 323 and the 643 grids. We observe that all methods have a very
similar accuracy for this test case, still far from the DNS result. The difference between the methods
becomes even smaller when the mesh is refined and they are all closer to the DNS solution. Note that
we do not plot the non-converged results from the ASGS static cases.
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Figure 5: Total energy evolution for the 323 and 643 elements meshes with the scaled initial condition.

5.2.4. Energy spectra

According to [55], the resolution of the small scales in isotropic decaying turbulence is judged by the
shape of the energy spectra at high wave numbers, and requires kmaxη ≈ 1, η = (ν3/ε)1/4 being the
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Kolmogorov length scale and kmax the maximum wave number required. In this case kmax ≈ 182, which
means at least a 3003 FE mesh for a DNS computation, with a high computational cost. In this section
we evaluate the capability of the VMS method to represent the energy of the eddies at the inertial
subrange without solving the small scales and compare the results against Kolmogorov’s law prediction

E(k) ∝ ε2/3k−5/3,

E being the turbulent kinetic energy.
In Fig. 6 the energy spectra for the different cases described in Table 1, using 323 and 643 linear

hexahedral element mesh are presented. We can see in Fig. 6(a) that the energy spectra at t = 0.2
decays with a different slope depending on the VMS method used. Although the differences are small
and only appear at large wavenumbers, we see that the dynamic OSS models are less dissipative than
the Dyn-Nl-ASGS and Sta-Lin-OSS ones. For the finer 643 mesh the difference between the spectra
obtained using Dyn-Nl-ASGS and Dyn-Lin-OSS are even smaller, as shown in Fig. 6(b); OSS is again
less dissipative.
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Figure 6: Energy spectra at t = 0.2 (323 mesh) and t = 0.8 (643 mesh).

5.2.5. h-p refinement

The energy decay computed using 323 and 643 linear FE meshes is far from the one obtained using
DNS [1], as shown in Fig. (5) and discussed above. To make clear that these poor results are due to this
crude discretization, we present a mesh refinement analysis, both reducing the element length h and
increasing the interpolation order p. We choose the Dynamic and Nonlinear OSS method (Dyn-Nl-OSS),
which is the one that shows the lowest slope in the accumulated iterations evolution (Fig. 4) for the 323

and 643 linear elements mesh. We solve the problem using the discretizations exposed in Table 2.

Label Mesh elements Element type
32 (Q1) 323 hexahedral linear (Q1)
64 (Q1) 643 hexahedral linear (Q1)
128 (Q1) 1283 hexahedral linear (Q1)
32 (Q2) 323 hexahedral quadratic (Q2)
64 (Q2) 643 hexahedral quadratic (Q2)
32 (Q3) 323 hexahedral cubic (Q3)

Table 2: h-p refinement cases.

In Fig. (7) we show the total kinetic energy evolution obtained using the discretizations defined in
Table 2. Reducing the mesh size h and/or increasing the polynomial order p (not to be confused with
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the pressure) the result becomes closer to the DNS, as expected. In Fig. 7(b) three groups can be clearly
observed, namely 32 (Q1), 32 (Q2) and 64 (Q1) and the remaining three. The best results are obtained
using Q2 elements although the difference is really small.
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Figure 7: Total kinetic energy evolution.

Given the differences in the total energy evolution the time at which the k−5/3 law is achieved differs
for the different methods. We show the energy spectra at time t = 0.8 and t = 1.0 for the different
cases presented before in Fig. 8. As it can be observed in Fig. 8(a), at t = 0.8, only the energy spectra
obtained using the 32 (Q1) and 64 (Q1) have a steeper slope, while the other cases are almost parallel
to the k−3/5 line. This is what was expected since the kinetic energy decay occurs earlier in the coarser
cases. In Fig. 8(b) we show the energy spectra at t = 1.0, and compare it against the DNS spectrum
from [1] at the same time step. It can be observed that the results tend to the DNS one as we increase
resolution, being the 64(Q2) case the most accurate one.

Note that the DNS spectra is not present in Fig. 8(a) because it is not available in the database [1]
at this time step.

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Energy spectra, t=0.8

   k
−5/3

log k

lo
g
 E

(k
)

   k
−5/3

   k
−5/3

   k
−5/3

   k
−5/3

   k
−5/3

 

 

Dyn−Nl−OSS−32 (Q1)

Dyn−Nl−OSS−64 (Q1)

Dyn−Nl−OSS−128 (Q1)

Dyn−Nl−OSS−32 (Q2)

Dyn−Nl−OSS−64 (Q2)

Dyn−Nl−OSS−32 (Q3)

(a) Energy spectra at t = 0.8

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Energy spectra, t=1.0

   k
−5/3

log k

lo
g

 E
(k

)

   k
−5/3

   k
−5/3

   k
−5/3

   k
−5/3

   k
−5/3

 

 

Dyn−Nl−OSS−32 (Q1)

Dyn−Nl−OSS−64 (Q1)

Dyn−Nl−OSS−128 (Q1)

Dyn−Nl−OSS−32 (Q2)

Dyn−Nl−OSS−64 (Q2)

Dyn−Nl−OSS−32 (Q3)

AGARD database

(b) Energy spectra at t = 1.0

Figure 8: Energy spectra at t = 0.8 and t = 1.0 for the h-p refinement defined in Table 2.
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6. Taylor-Green Vortex

6.1. Problem definition

The Taylor-Green vortex (TGV) problem is a typical and widely used problem in turbulence nu-
merical simulations. This problem aims to show, in a relatively simple flow, the basic turbulence decay
mechanisms like the turbulent energy cascade, the production of small eddies and the enhancement of
dissipation by the stretching of vortex lines.

6.1.1. Initial condition

As in the previous example, the computational domain is the unit cube with periodical boundary
conditions. The initial analytical condition for this problem, unlike the DHIT problem, is defined in the
physical space (see, e.g., [33]), and given by

ux = u0 cos(x) sin(y) sin(z), (56)

uy = −u0 sin(x) cos(y) sin(z),

uz = 0,

p = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2) ,

with

u0 =
2√
3

sin

(
γ +

2π

3

)
.

We choose γ = 0, which gives the mean initial velocity u0 = 1. The initial velocity field on the Fourier
space has eight modes located at the wave numbers k = (±1,±1,±1), which means that the initial flow
generates a single vortex scale. The pressure constant parameter p0 is chosen equal to zero.

6.1.2. Setting

We solve the TGV problem using a Reynolds number Re = 1600. The most common Reynolds
numbers available in the literature are Re = 800, Re = 1600 and Re = 3000 (see, e.g., [12, 29, 33, 50]).
We use the same VMS methods as for the DHIT problem defined in Section 5 to solve this test, namely
the ASGS and OSS methods, both with linear and nonlinear definitions of the convective term and
static or dynamic tracking in time of the subscales, as it is summarized in Table 1. The stabilization
parameters for each method are the same as those chosen for the DHIT test, see Subsection 5.1.2, and
discussed in Section 8.

Initially we consider a mesh of 323 hexahedral linear elements (Q1), but we will redefine this dis-
cretization to analyze the method performance when we refine the mesh, decreasing the element size h
or increasing the degree of the interpolation polynomial p. It implies to solve the problem on meshes
with 643 and 1283 linear (Q1), quadratic (Q2) or cubic (Q3) hexahedral elements. We also use a 203(Q3)
discretization to compare against other authors results.

6.2. Numerical results

6.2.1. Vorticity

The TGV test is characterized by its laminar evolution at the initial time steps, when the flow is
strongly anisotropic due to the structured large-scale vortices directly related to the initial condition. If
the Reynolds number is large enough, the vortex-stretching process, which activates the energy cascade
effect, transfers energy from large to small-scales and the flow becomes unstable and turbulent. According
to Brachet et al. [14], the flow becomes nearly isotropic for Re ≥ 1000.

In Fig. 9 we present some vorticity isosurface images showing this process for a 1283 linear hexahedral
elements mesh, for the dynamic and nonlinear OSS method. Note that the initial condition (Fig. 9(a))
consists in eight vortices with the same scale corresponding to the eight Fourier modes located at
k = (±1,±1,±1), as it has been pointed out previously.
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(a) Isosurface for |ω| = 1.0 at t = 0.0 (b) Isosurface for |ω| = 1.0 at t = 2.0

(c) Isosurface for |ω| = 2.5 at t = 4.1 (d) Isosurface for |ω| = 5.0 at t = 6.1

(e) Isosurface for |ω| = 8.0 at t = 8.2 (f) Isosurface for |ω| = 9.0 at t = 10.2

Figure 9: Vorticity isosurfaces with velocity contour at different time steps.
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6.2.2. Comparison of VMS methods

In order to compare the different VMS methods defined previously and to test their performance
as LES models we solve the TGV test on a 323 and 643 linear elements mesh with a Reynolds number
Re = 1600. As for the DHIT test, the results obtained using the different methods listed in Table 1 are
very similar for these coarser discretizations. The only point that is worth to note is that the linear and
static ASGS case (Sta-Lin-ASGS) and the dynamic and linear ASGS case (Dyn-Lin-ASGS) diverge at
some time step before t = 9. Anyway, all the methods converge as h→ 0 and the accuracy depends much
more on the mesh size than on the choice of the method. In turn, similar trends for the computational
cost analyzed in the previous section have been observed.

6.2.3. h-p refinement

As in the DHIT problem, we perform a refinement study reducing h and/or increasing p using Dyn-
Nl-OSS. The global energy evolution and the energy spectra are shown in Fig. 10. Fig. 10(a) displays the
total kinetic energy evolution compared with the DNS [14]. The results show that all cases, excluding the
323 and 643 linear hexahedral mesh, follow almost perfectly the line defined by the DNS result points.
On the other hand, Fig. 10(b) displays the energy spectra at t = 9, when the dissipation is maximum
and the flow is evolving to turbulence. We compare the energy spectra obtained solving all the cases
considered before with the DNS computed by [33], using the same Reynolds number (Re = 1600) at the
same time.
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Figure 10: Total kinetic energy evolution and energy spectra for the h− p refinement cases.

In Fig. 11 we show the dissipation rate of the problem, compared to the DNS results. The dissipation
rate is directly related to the enstrophy of the problem, ε = 2ν

(
1
2

〈
|ω|2

〉)
, where |ω| is the modulus of

the vorticity. At the continuous level, it determines the kinetic energy decay which, at the discrete level,
is also influenced by the numerical dissipation (see equation (35)). When an explicit model is used,
the dissipation introduced by the subgrid model also needs to be included. The FE viscous dissipation
ν‖∇uh‖2, is shown in Fig. 11(a) whereas the total dissipation rate ν‖∇uh‖2 + εh defined by equation
(35) is shown in Fig. 11(b).

As in the DHIT problem, the results obtained using the coarser 323(Q1) and 643(Q1) meshes are not
accurate, the FE viscous dissipation being far from the exact viscous dissipation, as shown in Fig. 11(a).
The total dissipation introduced by the method is too large and, especially for the 323(Q1), peaked
at earlier times, i.e., the energy decays faster and earlier than it should (see Fig. 11(b)). When finer
resolutions are used, the flows dynamics are much better predicted. Even when the resolution is not
enough to completely capture the viscous dissipation, the total dissipation compares very well with the
exact one, as shown in Fig. 11. This is a clear illustration of the very good performance of the method,
which adds the right amount of dissipation when the gradients are not captured by the resolution.
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Figure 11: Dissipation rate evolution for the h-p refinement cases.

6.2.4. Comparison with a non-stabilized method

All the results presented up to this point have been computed using a VMS method, either ASGS or
OSS. But, what would be the result using other methods? Are the methods presented here, comparable
to classical LES methods? Which methods perform better? To answer all these questions, we compare
the results obtained here against those obtained using the dynamic Smagorinsky model [29] and the
adaptive local deconvolution method [40] specifically designed as an implicit LES model. The former has
been obtained with a filter of size 2π/64 and spectral resolution up to 2π/256, thus not having numerical
but only modeling error. In turn, the latter has been obtained using a 643 grid without explicit subgrid
model, an explicit third-order Runge-Kutta scheme for the time discretization, a fourth order spatial
approximation of the symmetric terms and its particular approximation of the convective term which
is based on the (forth order) five-point central stencils approximation of the convective term [40]. To
make the comparison as fair as possible we select those combinations of h and p that result in a similar
number of degrees of freedom, which are 643(Q1) (second order), 323(Q2) (third order) and 20(Q3)
(fourth order) meshes (the last one having actually a bit less degrees of freedom).

The FE viscous dissipation is shown in Fig. 12(a) compared to the resolved dissipation obtained
using the dynamic Smagorinsky model [29] and the “molecular dissipation” of [40] (the one computed
using the molecular viscosity and the approximated solution, equivalent to our FE viscous dissipation
but in the finite volume context). The total dissipations of the three methods are compared in Fig.
12(b).

It can be observed in Fig. 12(a) that all the methods produce similar results, The dynamic Smagorin-
sky is more accurate in predicting the resolved dissipation at earlier times (up to t ≈ 6) but less accurate
at later times (see Fig. 12(a)). We plot the total dissipation in Fig. 12(b). We can see that the excellent
job our implicit LES model does when the 20(Q3) mesh is used, which would result in an excellent
prediction of the resolved kinetic energy decay (which is not available in [40]).

7. Turbulent channel flow

After studying the performance of VMS in the LES of homogeneous flows we turn our attention to
wall-bounded turbulent flow and present results of fully developed turbulent flow in a channel.

7.1. Problem definition

This test consists of a fluid that flows between two parallel walls driven by an imposed pressure
gradient which is defined by the Reynolds number based on the wall shear velocity, Reτ . In the important
amount of literature devoted to this problem, the usual Reynolds numbers are: Reτ = 590, Reτ = 395
and Reτ = 180 (see [11, 17, 31, 34, 38, 48, 51, 52, 56, 57]). We will restrict our attention to Reτ = 180
and Reτ = 395.
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Figure 12: Dissipation rate evolution compared to the dynamic Smagorinsky [29] and ALDM models [40].

7.1.1. Computational domain and mesh definition

We consider a computational domain defined by a box of length (Lx × Ly × Lz), which depends on
the Reynolds number. For Reτ = 180 the domain size is (4πδ × 2δ × 4/3πδ) while for Reτ = 395 the
size of the channel is (2πδ × 2δ × 2/3πδ). The x-direction is the flow direction, also called streamwise
direction, the y-direction is the wall-normal direction, and the z-direction is the spanwise direction. In
Fig. 13 we show schematically the geometry of the computational domain for this test.

Figure 13: Channel computational domain.

In the wall-normal direction boundaries (y = −δ and y = δ) we impose a non-slip condition. The
streamwise and spanwise directions are assumed to be homogeneous, so we use periodic boundary
conditions in these directions.3

We solve the problem using the coarsest mesh from previous tests, 323 linear hexahedral (Q1)
elements. The refinement in the wall-normal direction follows a hyperbolic function, also used in [17,
31, 34, 38, 56], defined as

yi =
tanh

(
γ
(

2i
npy
− 1
))

tanh(γ)
,

where i = 1, ..., npy with npy the total amount of nodes in the wall-normal direction. Here, γ is chosen
to be equal to 2.75 for both Reτ = 180 and Reτ = 395. We refer the reader to [3] for a complete study

3According to Kim et al. [52], the use of periodic boundary conditions in the homogeneous directions can be justified
when the computational box is such that the largest eddies in the flow fit in the computational domain. This is the case
considered here.
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of the influence of the discretization in the results of the TCF.

7.1.2. Setting

As it has been said above, we solve the problem using two different friction Reynolds numbers,
Reτ = 180 and Reτ = 395. We compare our results against those obtained by DNS in [57, 52] and we
choose our parameters accordingly. We take the bulk mean velocity and the half channel height equal
to one, Ū = 1 and δ = 1. The viscosity is computed from the estimated Reynolds number based on the
bulk mean velocity Re. Then, from the friction Reynolds number Reτ we compute the friction velocity
(uτ ), the wall shear stress (τw) and a driving force equivalent to a pressure gradient (fx), given by [59]:

uτ =
νReτ
δ

, τw = ρu2
τ , fx =

τw
δ
.

We use the Crank-Nicolson time integration scheme with a constant time step. Ham et al. test in [39]
the influence of the time step for a fully implicit Finite Difference midpoint method, equivalent to Crank-
Nicolson, on the statistics of a TCF DNS. They found little variation in statistical turbulence quantities

up to δt+ = 1.6. Following Gravemeier et al. [34], we define a time step in wall units δt+ =
δtu2

τ

ν ≈ 0.69,
which, according to [39], should not affect the turbulent quantity statistics. The same authors performed
25000 time steps in order to allow the flow to develop and they collected the statistics during another
5000 time steps. A total averaging time about 500δ/U0 is used in [19] once the statistically stable regime
is achieved.

In Table 3 we present the value of the different parameters defined above for the two different friction
Reynolds numbers. For the initial condition we impose a parabolic profile obtained solving the stationary
Stokes problem with the driving force and viscosity defined above. Additionally, with the aim to achieve
a fully developed flow earlier, we introduce a perturbation with a maximum value of 10% the bulk
velocity.

Reτ 180 395
ν 3.5714 · 10−4 1.4545 · 10−4

uτ 6.4286 · 10−2 5.7455 · 10−2

τw 4.1327 · 10−3 3.3010 · 10−3

fx 4.1327 · 10−3 3.3010 · 10−3

δt 0.06 0.03

Table 3: Test parameters for the different friction Reynolds number.

Our purpose is to check the VMS methods defined in Subsection 2.2 for a wall-bounded flow. Fol-
lowing the computations performed for the previous tests, we solve the problem using the same cases
defined in Table 1 and the numerical parameters τc = 0 and τm are defined in the same way, now with
the algorithmic constants c1 = 12 and c2 = 8 (see Subsection 8) and the characteristic length, h, is
chosen to be the minimum element length.

7.2. Numerical results

7.2.1. Velocity profiles

We first present the mean streamwise velocity profile scaled by the wall shear stress velocity, 〈u〉+ =
〈u〉
uτ

for all cases defined in Table 1, where 〈·〉 denotes the mean value in streamwise and spanwise direction

and in time, as a function of y+ = yuτ
ν .

In Fig. 14(a) we show the mean streamwise velocity normalized by the wall-shear velocity, uτ ,
obtained for all cases considered in Table 1 in a 323 linear elements mesh for the Reτ = 395 case. We
compare the results with the DNS one obtained in [57]. We can observe in Fig. 14(a) that all methods
perform quite similar and are very close to the DNS result. Fig. 14 also depicts the streamwise, spanwise
and wall-normal root mean square (rms) velocity fluctuation components normalized by the wall-shear
stress velocity.

24



10
0

10
1

10
2

0

5

10

15

20

25
Mean streamwise velocity

y+

<
u>

+

 

 

Sta−Lin−ASGS
Dyn−Lin−ASGS
Dyn−Nl−ASGS
Sta−Lin−OSS
Dyn−Lin−OSS
Dyn−Nl−OSS
DNS MKM

(a) Mean streamwise velocity

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Streamwise velocity fluctuation

y+

u’
+

 

 

Sta−Lin−ASGS
Dyn−Lin−ASGS
Dyn−Nl−ASGS
Sta−Lin−OSS
Dyn−Lin−OSS
Dyn−Nl−OSS
DNS MKM

(b) Rms streamwise velocity fluctuation

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Wall normal velocity fluctuation

y+

v’
+

 

 
Sta−Lin−ASGS
Dyn−Lin−ASGS
Dyn−Nl−ASGS
Sta−Lin−OSS
Dyn−Lin−OSS
Dyn−Nl−OSS
DNS MKM

(c) Rms wall-normal velocity fluctuation

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Spanwise velocity fluctuation

y+

w
’+

 

 
Sta−Lin−ASGS
Dyn−Lin−ASGS
Dyn−Nl−ASGS
Sta−Lin−OSS
Dyn−Lin−OSS
Dyn−Nl−OSS
DNS MKM
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Figure 14: Mean streamwise velocity and rms velocity fluctuations for Reτ = 395 case using a 323 Q1 mesh.

7.2.2. Reynolds shear stress

Another turbulent quantity widely used in the TCF test is the Reynolds shear stress. At the contin-
uous level the Reynolds shear stress is defined as

Rxy = −〈u′v′〉+ ν
∂ 〈u〉
∂y

, (57)

being u and v the velocity in the streamwise direction and wall-normal direction, respectively, and the
prime denoting the fluctuations, i.e., the variable minus the mean.

It can be seen that for the discrete equation (13), one can obtain the Reynolds shear stress defined
as follows:

Rxy = −
〈
a′xa
′
y

〉
+ ν

∂ 〈uh〉
∂y

= −〈u′hv′h〉︸ ︷︷ ︸
I

−〈u′hṽ′〉 − 〈ũ′v′h〉 − 〈ũ′ṽ′〉︸ ︷︷ ︸
II

+ ν
∂ 〈uh〉
∂y︸ ︷︷ ︸
III

. (58)

being ai the i-th component of the advection velocity. In (58) we have used the nonlinear definition of
the advection velocity defined in (25).

The first term on the second part of (58) (term I) is the contribution of the resolved scales (FE
component) to the cross term

〈
a′xa
′
y

〉
. Term II denotes the contribution of the subgrid scales and

their interaction with the FE components, that is, the unresolved part of the equation. Finally, term
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III accounts for the viscous portion of the Reynolds shear stress. Note that the derivatives of the
approximated subscales are not computable, since these approximated subscales are discontinuous and
have been designed to approximate the effect of the exact subscales on the FE scales elementwise.

For a fully developed and statistically stable turbulent flow, the Reynolds shear stress along the wall-
normal direction has a linear shape (see [52]). Normalized by the viscous term III value at the wall, the
total Reynolds shear stress in terms of y/δ should have the following expression: Rxy(y/δ) = (−y/δ).
Fig. 15 depicts the absolute value of the Reynolds shear stress along the upper half channel (y > 0),
with the different terms appearing in (58) and compared with the DNS in [57], for the Dyn-Nl-OSS case
with Reτ = 395. The computed results are almost identical to the DNS ones. It has to be noted that
the computed results are evaluated at the integration points due to the presence of the derivative in the
Reynolds shear stress, which using linear FEs is constant at each element. Then, using two integration
points per direction for the numerical integration, term III will be constant for those two integration
points being in the same element. This behavior is observed in Fig. 15, where the viscous term is pairwise
constant. This last fact also affects the total Reynolds shear stress. Since the resolved term has different
values at each element Gauss point, the sum of terms I and III results in an oscillatory shape near
the wall, where the viscous term is more relevant. It is also seen that the unresolved term II does not
contribute to the Reynolds shear stress, which is a good property of the tested VMS methods. The
results for the remaining cases in Table 1 are similar to those presented in Fig. 15 and have not been
reported.
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Figure 15: Reynolds stress of the Dyn-Nl-OSS case.

8. Sensitivity with respect to the stabilization parameters

All the VMS models considered herein depend on the stabilization parameters τm and τc, which
contain constants c1 and c2 whose value is chosen from numerical experiments. However, we can infer
from (38) or (39) how this dependency will be. As mentioned before, the last two terms in (39) are
dissipative and therefore, increasing τm and/or τc we obtain a more dissipative method. From (20)-(21),
increasing τm results in a reduction of τc. More precisely

τc = ν +
c2
c1
|a|h (59)

from where we see that increasing c1 reduces both τm and τc but increasing c2 reduces τm but increases
τc. On the other hand, only the fourth term in (39) is essential to control τm ‖P (a · ∇uh +∇ph)‖2 and
it is possible to choose τc = 0.

The results presented above have been obtained using different settings of the numerical stabilization
parameters τm and τc. In DHIT and TGV tests, we take the algorithmic constants c1 = 12 and c2 = 2
for τm and we set τc = 0, while for the TCF test we have used c1 = 12 and c2 = 8 for τm and also
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τc = 0. In this section we analyze the influence of these parameters on the numerical results and justify
our choice of the constants for the large eddy simulation of turbulent flows.

We have performed a sensitivity analysis of the VMS schemes with respect to the value of c1 and c2.
To see the effect of such algorithmic constants on τm and τc independently, we define a new constant cc
which allows us to redefine (59) as

τc = cc

(
ν +

c2
c1
|a|h

)
(60)

These experiments have been done for the DHIT test using the Dyn-Nl-OSS case in a 323 Q1 mesh and
the results are depicted in Fig. 16. They show important changes in the dissipation the VMS methods
introduce when constants are changed. It is known that the decay rate of kinetic energy in isotropic
turbulence is driven by large scales (of the order of the integral scale) (see, e.g., [25]). As we have
observed, the subgrid model has only influence when a very coarse grid is used.

In particular, for high Reynolds number problems, the constant c1 does not have so much influence
on τm, but it does on τc. With respect to c2, we observe that it influences the energy dissipation of the
method, which is increased when the value of this constant is decreased. When τc is activated (cc = 1),
we observe a growth of the energy dissipation when the coefficient c2/c1 increases. This behavior is what
we are expecting since the method becomes more diffusive when τc is increased due to the last term in
(39).

Concerning the energy spectra, it is also shown in Fig. 16(a) and Fig. 16(b) that the only constant
that influences the result when τc = 0 is c2. In these figures we can see that when we increase c2 the
method is less dissipative, resulting in an inappropriate slope of the energy spectra. We can observe
that with c2 = 2 the decay of the energy behaves correctly, keeping the k−5/3 law. For the largest values
of c2 the energy at small scales is not properly dissipated. Note that for c2 = 2 the slope of the energy
spectrum is kept almost constant along the time, which does not happen in the other cases. When we
activate τc (see Figs. 16(c) and 16(d)) we are introducing additional dissipation into the system that
eliminates the pile up of the energy spectra for all the cases, but generally results in steeper slopes. Here
we also have to note that the energy spectra slope is time dependent for all cases except for c2 = 2.
This analysis led us to choose c1 = 12 and c2 = 2 for τm and set τc = 0 for homogeneous turbulence,
i.e., DHIT and TGV tests.

In order to go in depth on the effect of the algorithmic constants c1 and c2 and the stabilization
parameter τc of the incompressibility equation, we compare the results for the TCF problem with a
friction Reynolds number Reτ = 180 using the same choice made for homogeneous turbulence (c1 = 12,
c2 = 2 and τc = 0) against the setting of the incompressible case in [3] (c1 = 12, c2 = 2 and τc as in
(21)) and a less dissipative setting with c1 = 12, c2 = 8 and τc = 0. These tests have been done using
the Dyn-Nl-OSS case in a 323 Q1 mesh.

In Fig. 17(a) the mean velocity in the streamwise direction is shown. As in the case of homogeneous
turbulence, some differences between the three cases can be observed, the choice used in section 7 being
the most accurate one. The effect of the algorithmic constant c2 and the stabilization parameter τc
in the problem solution can be clearly observed, i.e., the less dissipative choice gives the best results.
Figs. 17(b), 17(c) and 17(d) depict the rms velocity fluctuations in all directions. The fluctuations in
the streamwise direction are better predicted using (c1 = 12, c2 = 8 and τc = 0) but the spanwise and
wall-normal directions are not.

9. Behavior in the small time step limit

Small time step instabilities for VMS LES simulations of turbulent flows have been reported in
[41, 31]. In these references, the VMS models differ from the ones in this work. Instead of the definition
of τm in (20), a time step dependent stabilization parameter τm

τm =

(
1

δt
+
c1ν

h2
+
c2|a|
h

)−1

,
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(a) Energy spectra at t = 0.4 with cc = 0
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(c) Energy spectra at t = 0.4 with cc = 1
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(d) Energy spectra at t = 0.8 with cc = 1
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Figure 16: Comparison of energy spectra for different c1, c2 and cc in the DHIT test.

is considered in all cases.4 The plain introduction of a time step dependency in τm faces serious difficul-
ties:

• The method becomes unstable in the small time step limit since it converges to the unstable
Galerkin formulation.

• If τc is computed from (21) (as it is usually done, see, e.g., [11, 41, 31, 34]), τm ∼ δt and τc ∼ δt−1

in the small time step limit. If this approach is followed , the essential numerical dissipation given
by the fifth term in (38) is reduced as δt → 0, whereas the numerical dissipation introduced by
the last term in the left hand side (a incompressibility penalty term) of (38) is increased. It has a
compensating effect in practice, but the penalty term does not properly act as a turbulence model.

Let us perform a test to study the small time step behavior of the VMS methods presented in
Section 2, using the skew-symmetric type 1 form of the convective term, as in previous numerical

4The parameter τm,t for the dynamic subscales model also scales with δt, as discussed in Section (4). However, this
dependence comes from a consistent time integration of the subscale time derivative (see also [24, Section 3.2]).
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Figure 17: Comparison of mean streamwise velocity and rms velocity fluctuations for Reτ = 180 case using a 323 Q1 mesh.

experiments. We also include a combination we do not advocate here, static subscales and nonlinear
splitting, an approach followed in [18, 11, 41, 31, 34]. The behavior of all the methods for the TCF test
with δt = 0.002 is summarized in Table 4, where YES means that the simulation was successful, NO
means that the simulation diverged and δt ↓ means that the simulation was successful only when the
adaptive time step strategy described in Section 5.1.2 was used.

It is important to note that the static and nonlinear ASGS formulation used in [11, 41, 31, 34] with
the convective term type 2 becomes unstable after some time, as also reported in these works, even for
the time step size defined in section 7.1.2. However, using the the skew-symmetric type 1 form of the
convective term, which exactly conserves energy, the simulation ended successfully for the time step
defined in section 7.1.2, but failed to converge with the small one. This result is a numerical evidence
of the fact that the use of convective terms without the skew-symmetric property produce energy (see
also Section 5.2.3) that can make simulations unstable. Further, these results evidence once again that it
is a good choice to stick to provably unconditionally stable formulations, i.e., the dynamic formulations
and/or orthogonal subscales formulations with a skew-symmetric convective term. Similar results have
been reported in the finite difference context in [69], where it is shown that stable simulations of the
TCF can be performed using an energy-preserving skew-symmetric formulation.

To the best of our knowledge, the stability (or instability) of dynamic ASGS methods has not
been proved. In our numerical experiments the static and dynamic linear versions fail to converge in
some problems (e.g DHIT) but we have not found these problems with the Dyn-Nl-ASGS method.
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Method ASGS OSS
Tracking Static Dynamic Static Dynamic

Advection Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
Converged Yes No Yes Yes δt ↓ δt ↓ Yes Yes

Table 4: Small time step convergence analysis.

Nevertheless, we have found an important increase in the computational cost when the time step is
reduced. This behavior is explained in Fig. 18, where the number of solver iterations at the first time
step is plotted against the time step size for the dynamic and nonlinear cases of ASGS and OSS methods,
with 323 and 643 Q1 mesh, for the DHIT test case. The number of required solver iterations (and as a
result the condition number of the system matrix) blows up exponentially for the ASGS method as we
reduce the time step size, whereas it remains constant for the OSS method. This important observation
explains the computational cost trends observed in the previous section.
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Figure 18: Solver iterations at the first time step for DHIT test.

10. Conclusions

In this paper we have assessed the performance of the numerical formulations previously developed
in our group [21, 24, 23, 61] for turbulent incompressible flow problems.

The methods proposed are different to those whose testing in turbulent regimes has been published
before, the closest ones being those reported in [11, 31]. First, we consider orthogonal subscales for-
mulations. Further, in [11] the ASGS method with quasi-static subscales is used (in the isogeometrical
analysis context) but the time step dependency is included in the stabilization parameter (with the
inconsistencies and problems discussed in section 9) and the nonlinear scale splitting is applied in the
FE equation only (not in the subscale equation). Time dependent subscales are used in [31], but the
authors consider a linear scale splitting. Furthermore, in both works τc 6= 0.

First, we have discussed some theoretical aspects, such as the dissipative structure of the methods
and the way energy is conserved, which we have numerically verified. Related to this point, we analyze
the effect of using different skew-symmetric forms of the convective term, and its impact on energy
conservation; if a skew symmetric form is not used, negative energy dissipation can be introduced to
the scheme, which may be a source of instability.

However, the most important conclusions come from the different problems that we have solved
numerically. Overall, OSS and ASGS yield similar results, all displaying the features of turbulent flows,
reproducing appropriately global outputs such as energy spectra. The methods are stable and converge
to reference solutions, both when the mesh is refined and when the polynomial order is increased.
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On the other hand, we have thoroughly analyzed the effect of the algorithmic constants for isotropic
turbulence and wall-bounded turbulent flows, and chosen them based on this sensitivity analysis. An
important observation in this line is the fact that all the methods considered in this work are certainly
sensitive to the algorithmic constants and they have to be properly chosen in order to simulate turbulent
flows on coarse meshes. In fact, the differences in the numerical results are much more influenced by the
algorithmic constants than by the choice of the VMS formulation itself. This strong influence seems to
be a characteristic feature of turbulence, since in our experience it is not so important in laminar flows.
Further, we have analyzed the effect of small time steps when the stabilization parameters depend on
them.

Apart from the quality of the results, the OSS method with dynamic subscales is convenient in terms
of numerical performance. It requires more nonlinear iterations than ASGS, but less iterations of the
linear solver, altogether leading to lower computational cost. In both formulations, ASGS and OSS, the
use of dynamic subscales has been found to be crucial for nonlinear convergence. In fact, in some cases
quasi-static subscales failed to converge. We have explained these facts by plotting the number of solver
iterations required to converge as we reduce the time step size, for a fixed mesh in space. The number
of iterations (and as a result the condition number of the system matrix) blows up exponentially for
ASGS whereas it remains bounded for OSS.

Acknowledgments

This work has been partially funded by the European Research Council under the FP7 Programme
Ideas through the Starting Grant No. 258443 - COMFUS: Computational Methods for Fusion Technol-
ogy. We also acknowledge the financial support received from the Spanish Ministry of Economics and
Competitiveness, National Programme of R&D to the project PARANAT (ENE2011-28825). R. Cod-
ina gratefully acknowledges the support received from the ICREA Acadèmia Progam from the Catalan
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