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ABSTRACT
In this work we present a novel monolithic Finite Element Method (FEM) for the hydroelastic
analysis of Very Large Floating Structures (VLFS) with arbitrary shapes that is stable, energy
conserving and overcomes the need of an iterative algorithm. The new formulation enables a
fully monolithic solution of the linear free-surface flow, described by linear potential flow, cou-
pled with floating thin structures, described by the Euler-Bernoulli beam or Poisson-Kirchhoff
plate equations. The formulation presented in this work is general in the sense that solutions can
be found in the frequency and time domains, it overcomes the need of using elements with C1
continuity by employing a continuous/discontinuous Galerkin (C/DG) approach, and it is suit-
able for Finite Elements of arbitrary order. We show that the proposed approach can accurately
describe the hydroelastic phenomena of VLFS with a variety of tests, including structures with
elastic joints, variable bathymetry and arbitrary structural shapes.

1. Introduction
Floating offshore structures are of great interest for many applications. A particular type of floating structures are

the so called Very Large Floating Structures (VLFS). One can find several examples of VLFS [50], such as floating
airports [24, 55], floating breakwaters [37, 11], floating solar energy installations [46, 42], or even futuristic floating
modular cities [45, 14]. The study of the behavior of VLFS is, therefore, relevant for a wide variety of industries and
scientific disciplines. One of the main characteristics of VLFS is that the overall structural stiffness is relatively low,
behaving like elastic thin plates. In addition, due to their large dimensions, the incoming waves are typically relatively
short compared with the structure length. Thus, due to the low stiffness combined with short incoming waves, the
response of VLFS is governed by a strong coupling between inertial, hydrodynamic and elastic responses, what is
known as hydroelastic response.

The study of hydroelastic phenomena entails several challenges, namely the strong coupling between the elastic
deformation of the structure and its hydrodynamic response, the analysis of the structural response under the effect of
nonlinear waves, the characterization of the behavior of finite structures or the nonlinear interaction between flow and
structure, see [31]. During the last decades, several techniques have been developed to analyse hydroelastic phenomena
for VLFS under the effect of waves. We refer the reader to [10] for an in depth review on different methods used for the
hydroelastic analysis of VLFS. Some studies have been carried out based on experimental analysis of floating elastic
platforms, see for instance [53, 33, 43]. However, experimental studies are limited in terms of structural size and
wave conditions. Other studies are based on analytical or semi-analytical approaches, see [47, 39, 2, 3, 52], where
the fundamental behaviour of floating elastic structures is assessed, assuming infinite or finite floating platforms with
regular shapes. Again, analytical approaches are limited to the study of VLFS with regular shapes, e.g. rectangular or
circular platforms. Hence, the use of numerical techniques is essential for the analysis of the hydroelastic behavior of
VLFS of finite size with irregular shapes and subject to a variety of wave input conditions.

One of the most popular numerical approaches for the hydroelastic analysis of VLFS relies on the mode expansion
framework for linear potential flow theory, based on the Boundary Element Method. Assuming a negligible structure
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draft, this approach models the effect of the structure by a pressure distribution on the free surface. The dynamic
pressure distribution is approximated by a set of panels with different accuracies, e.g. piece-wise constant, linear,
quadratic or cubic, see [35, 54, 23, 27]. Most of the works based on the panel method, or mode expansion, assume
regular shaped structures. For the analysis of irregular shaped VLFS, the Finite Element Method (FEM) becomes
predominant in the literature due to its suitability to model the structural behaviour of arbitrary shaped platforms. Some
works have developed a coupling strategy between BEM and FEM frameworks, see for instance [22, 23, 49, 44, 40].
The study of the hydroelastic phenomena in VLFS can be done in either the frequency domain or the time domain.
The former assumes a linear response of the transient effects described as a time-harmonic motion, see for instance
[26, 34, 16]. The time-domain analysis avoids the linear assumption, making it a suitable approach for the analysis
of steep wave fronts and cases with highly nonlinear effects, [33, 25]. In this work we develop a formulation that is
suitable for both approaches, frequency and time domain.

VLFS hydroelasticity is inherently a Fluid-Structure Interaction (FSI) problem, that is a fluid flow problem coupled
with a structural elasticity problem. There are two main frameworks that can be used to solve this type of problems:
a monolithic approach, where a unified set of coupled governing equations are solved, and a partitioned approach,
where the equations for the fluid and for the structure are solved separately and a coupling strategy is used to ensure
compatibility between the two solutions. One coupling strategy that can be used for a partitioned scheme is a weak
coupling (also called a staggered scheme) strategy. Here, a new fluid solution is solved using the structural displacement
of the previous time step. While the obtained fluid solution is used to determine the loading on the structure. One of the
advantages of partitioned schemes is that, if the software is available separately for the flow and structural deformation,
one can reuse them and just develop an interface that exchanges the coupling variables. However, stable behavior of
this coupling method is not guaranteed due to the added-mass effect [9]. In case of incompressible fluids, selecting a
smaller time step does not resolve this problem [8].

Alternatively, one could use a strong coupling strategy, where the compatibility conditions are enforced simulta-
neously. This is done by iteratively solving fluid and structural updates until convergence is achieved. For a strongly
coupled the aforementioned instabilities due added-mass effect can be avoided by using sufficient relaxation in the
iteration procedure. However, this may lead to excessive iterations even if the two separate problems are linear, see for
instance [32, 30, 51]. Otherwise, monolithic approaches are stable and do not require additional iterations to resolve
the coupling. Mayor drawback is the fact that ad hoc software has to be developed in case it is not available for the cou-
pled problem at hand. A particular feature of monolithic VLFS simulations is that they lead to a mixed-dimensional
problem, i.e. a problem described by a system of Partial Differential Equations (PDEs) defined in domains of dif-
ferent topological dimension. The solution of mixed-dimensional PDEs in a FEM framework presents an additional
challenge, related to the coupling of Finite Element (FE) spaces defined in different dimensions, see [15].

In this work we present a novel monolithic FEM framework for the hydroelastic analysis of VLFS with arbitrary
shapes that is stable, energy conserving and overcomes the need of an iterative algorithm. The formulation is based
on the monolithic FEM approach proposed by Akkerman et al. in [1] for linear free-surface potential flow, which
is here extended to floating structures modeled as Euler-Bernoulli beams or Poisson-Kirchhoff plates. Moreover, the
formulation presented in this manuscript is general in the sense that solutions can be found in the frequency and
time domains. In addition, the proposed formulation overcomes the need of using elements with C1 continuity, i.e.
continuity of rotations on the element boundaries, by using a continuous/discontinuous Galerkin (C/DG) approach
formulated in [18]. Note that we restrict this manuscript to the analysis of linear problems, i.e. linear potential flow
coupled with linear Euler-Bernoulli/Poisson-Kirchhoff structural formulations. However, the framework would still
hold for nonlinear potential flow theory and/or nonlinear structural models. For the sake of completeness, in this
manuscript we focus on a detailed analysis of the formulation for linear problems, keeping its extension to nonlinear
problems as a future work.

The manuscript is organized as follows: in Section 2 we describe the problem setting, with the definition of the
governing equations for the fluid, structure in two and three-dimensional cases, as well as the coupling conditions. In
Section 3 we develop the novel monolithic formulation for VLFS for the most general case, i.e. a floating Poisson-
Kirchhoff plate in a three-dimensional domain, giving the expression of the fully discrete problem for both, frequency
and time domains. Section 4 is dedicated to the numerical analysis of the method, where we prove consistency, energy
conservation, stability and convergence statements. The numerical results are shown in Section 5, where we analyse
the behavior of the method for a variety of cases in two and three dimensions and for the frequency and time domains.
The final conclusions are given in Section 6.
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2. Problem setting
Let us consider a thin structure floating in a fluid. We denote the fluid domain asΩ, bounded by the bottom surface,

Γb, the inlet surface, Γin, the outlet surface, Γout, the free surface, Γfs, and the interface with the floating structure, Γstr.The floating structure is bounded by �Γstr ≡ Λfs,str, a set of entities of dimension d−2with d the topological dimension
of Ω. We might also consider the case in which the structure has a set of internal joints with different structural
properties, denoted as Λj. The geometry of the idealized problem is given in Figure 1. We use n for the normal vector

Figure 1: Sketch with the definition of the geometrical entities.

to the surface, while nΛ to indicate the normal to the joint on the structure plane. Note also that the normal nΛ appears
naturally in the formulation when integrating by parts on the structural domain, see Section 3.1.

Let us also consider the following assumptions:
Assumption 1. The fluid in Ω is inviscid, incompressible and irrotational and can be described well by (linear)
potential flow. We also assume that there is no cavitation, i.e. detachment of the structure with respect to the fluid.

Assumption 2. The incoming waves have a small steepness and can be well described well by (linear) Airy wave
theory.

Assumption 3. The floating structures are thin and can be modeled by the linear Euler-Bernoulli equations in the
case of a 2-dimensional domain and by the linear Poisson-Kirchhoff theory for the 3-dimensional domain.

2.1. Linear potential flow theory
Let us denote the fluid velocity as u ∶ Ω → ℝd . From the incompressibility condition assumed in Assumption 1,

we know that
∇ ⋅ u = 0 in Ω. (1)

We also know that for an inviscid and irrotational flow, there exists a potential field, � ∶ Ω→ ℝ, that satisfies
u = ∇�. (2)

Combining equations (1) and (2), we reach the governing equation for a potential flow:
Δ� = 0 in Ω. (3)

Equation (3) is supplemented with the appropriate boundary and interface conditions. Before detailing such conditions,
we introduce some notation. Let us denote by � the surface elevation with respect to the surface of the fluid at rest,
and by n the normal vector to any surface pointing outwards, see Figure 1. We also use the notation (⋅)t and (⋅)tt forthe first and second order time derivative. Using this notation, the kinematic boundary conditions are given by

n ⋅ ∇� = 0 on Γb, (4a)
O. Colomés et al.: Preprint submitted to Elsevier Page 3 of 35
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n ⋅ ∇� = uin on Γin, (4b)
n ⋅ ∇� = uout on Γout, (4c)
n ⋅ ∇� = �t on Γfs ∪ Γstr. (4d)

Equation (4a) is enforcing a no penetration boundary condition, where the velocity normal to the boundary is zero.
In equations (4b) and (4c) we enforce a prescribed inlet and outlet normal velocities, uin and uout, respectively. At thefree surface and at the beam interface, equation (4d), we enforce that the time derivative of the fluid surface is equal
to the normal component of the velocity. Note that this last condition is only valid under Assumption 2, where due to
small wave steepness the normal component of the velocity is well approximated by the vertical velocity component.
When this assumption is not valid, equation (4d) should be replaced by �z − ∇�∇� = �t, where �z is the directionalderivative of � in the vertical direction.

In addition, the fluid satisfies the dynamic boundary conditions at the free surface and at the interface between the
fluid and the structure. This condition is given by the Bernoulli’s equation for pressure in a potential flow, which at the
free surface and interface boundary reads

p = −�w�t − g�w� −
1
2
(∇�)2 on Γfs ∪ Γstr. (5)

Where p is the pressure, �w the fluid density and g = 9.81 m/s2 the gravity acceleration. Under Assumption 2, the
quadratic terms in equation (5) can be neglected, leading to the linearized condition

p = −�w�t − g�w� on Γfs ∪ Γstr. (6)
At the free surface, we enforce that the pressure is equal to the atmospheric pressure, which we assume to be zero,
i.e. p = pa = 0. At the fluid-structure interface, the pressure is in equilibrium with the structure dynamics. Using
Assumption 3, i.e. no cavitation and thin beam/plate theories, the structural motion is governed either by the Euler-
Bernoulli equation form beams or the Poisson-Kirchoff plate theory. In what follows we describe the two cases.
2.2. Euler-Bernoulli beam theory

We start by defining the 2-dimensional case, where the floating structure is modeled as a 1-dimensional Euler-
Bernoulli beam. In that case, we have that the surface elevation � ∶ Γstr → ℝ, which from Assumption 3 is equivalent
to the beam deflection, satisfies

�bℎb�tt +DΔ2� = p on Γstr. (7)
With �b the structure density, ℎb the structure thickness and D the structural rigidity, given in terms of the Young
modulusE and the moment of inertia asD ≝ EI = Eℎ3b∕12. Here,D is assumed to be constant. Adding equations (6)
and (7) together and using the fact that the atmospheric pressure is zero at the free surface, we have that the potential
field and the fluid surface elevation satisfy the following conditions at the fluid free surface and fluid-structure interface

�t + g� = 0 on Γfs, (8a)
d0�tt +D�Δ2� + �t + g� = 0 on Γstr. (8b)

Where d0 ≝ �bℎb
�w

is the draft (submerged section) of the structure and D� ≝ D
�w

. Equation (3) together with the
kinematic boundary conditions given in (4) and the dynamic boundary conditions given in (8), define the systems of
equations that will be analysed in subsequent sections.

In addition, we consider that the structure is allowed to have free motion at the boundaries, i.e. zero moment,
M ≝ DΔ� = 0, and shear V ≝ ∇(DΔ�) ⋅ nΛ = 0. We also assume that in the case of having joints, these will act as
linear rotational springs, meaning that the mean moment at the join will depend linearly on the relative rotation angle,
with a spring constant of k'. Since there are not any external point moment or shear force applied to the joint, the
shear and moment will be continuous at these points. These conditions can be summarized as

DΔ� = 0 on Λfs,str, (9a)
O. Colomés et al.: Preprint submitted to Elsevier Page 4 of 35
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∇(DΔ�) ⋅ nΛ = 0 on Λfs,str, (9b)
⟨DΔ�⟩ = −k'[[∇� ⋅ nΛ]] on Λj, (9c)

[[DΔ�nΛ]] = 0 on Λj, (9d)
[[∇(DΔ�) ⋅ nΛ]] = 0 on Λj. (9e)

2.3. Poisson-Kirchhoff plate theory
For the 3-dimensional case, the floating structure is modeled as a 2-dimensional thin plate governed by the Poisson-

Kirchhoff theory. In this case, the plate deflection, i.e. surface elevation, follows the relation
�bℎb�tt + ∇2 ∶ (C∶ ∇2�) = p on Γstr. (10)

Where∇2 is the Hessian operator andC is a fourth-order symmetric tensor containing the elastic coefficients. Note that
the problem is defined in ℝ3, so the Hessian operator will be a 3 × 3 matrix, while the elastic tensor C has dimension
2 on each component. Assuming that the structure remains contained in a plane aligned with the coordinate system,
e.g. normal to the z-direction, one can extend the 2-dimensional definition of the tensor as follows

Cijkl =

{

ℎ3b
12 [�(�ik�jl + �il�jk) + ��ij�kl] 1 ≤ i, j, k, l ≤ 2,
0 otherwise. (11)

In equation (11), ��� is the Kronecker delta, � ≝ E
2(1+�) and � ≝ �E

(1−�2) , with E the Young’s modulus and � the
Poisson’s ratio.

Following the same procedure as in Section 2.2, we introduce equation (10) into equation (6), resulting into the set
of governing equations on the free and structure surfaces that read

�t + g� = 0 on Γfs, (12a)
d0�tt + ∇2 ∶ (C� ∶ ∇2�) + �t + g� = 0 on Γstr. (12b)

Where we have used the notation C�,ijkl ≝ Cijkl
�w

. Again, we consider that the structure is free of reactions on its
boundaries Λfs,str, i.e. zero moment and zero shear. We also assume that we can have linear rotational springs on
1-dimensional joints, Λj, where the normal is linearly dependent on the rotation to the joint, with a spring constant of
k�, assumed scalar for simplicity. These conditions are summarized in the following set of equations

(C� ∶ ∇2�) ⋅ nΛ = 0 on Λfs,str, (13a)
(∇ ⋅ (C� ∶ ∇2�)) ⋅ nΛ = 0 on Λfs,str, (13b)

⟨C� ∶ ∇2�⟩ = −k'[[∇� ⊗ nΛ]] on Λj, (13c)
[[(C� ∶ ∇2�) ⋅ nΛ]] = 0 on Λj, (13d)

[[(∇ ⋅ (C� ∶ ∇2�)) ⋅ nΛ]] = 0 on Λj. (13e)
Note that for 2-dimensional problems the Poisson-Kirchhoff formulation presented in equations (12)-(13) collapses

to the Euler-Bernoulli formulation given in (8)-(9). Hereinafter we will restrict the derivations for the most general
Poisson-Kirchhoff case. We refer the reader to Appendix 6 for the equivalent formulation for the floating the Euler-
Bernoulli beam case.

3. A monolithic Finite Element formulation
3.1. Weak form

In order to derive the weak form of the problem given by equations (3), (4) and (8), we first introduce some notation
that will be used hereinafter. Let us denote by Lr(Ω), 1 ≤ r < ∞, the spaces of functions such that their r-th power is
absolutely integrable in Ω. For the case in which r = 2, we have a Hilbert space with inner product

(u, v)Ω ≝ ∫Ω
u(x) v(x)dΩ (14)
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and induced norm ‖u‖L2(Ω) ≡ ‖u‖Ω ≝ (u, u)1∕2Ω . Abusing of the notation, the same symbol as in (14) will be used for
the integral of the product of two functions, even if these are not in L2(Ω), and both for scalar and vector fields. The
space of functions whose distributional derivatives up to orderm are inL2(Ω) are denoted byHm(Ω). We will focus on
the case of m = 1, which is also a Hilbert space. Given a Banach space X, Lr(0, T ;X) is the space of time dependent
functions such that their X-norm is in Lr(0, T ), being [0, T ] the time interval where such functions are defined. In
addition, we will also use the inner product on a given boundary, Γ ⊂ Ω, defined as

(u, v)Γ ≝ ∫Γ
u(x) v(x)dΓ, (15)

with the associated norm ‖u‖L2(Γ) ≡ ‖u‖Γ ≝ (u, u)1∕2Γ .
Let  ≝ L2(0, T ;H2(Ω)) be a functional space, Γfs the trace space of  on the free surface Γfs, i.e. Γfs ≝

{v|Γfs ∶ v ∈ }, and Γstr the trace space of  on the structure Γstr. The weak form of the problem reads: find
[�, �, �] ∈  × Γ such that

B([�, �, �], [w, v, u]) = L([w, v, u]) ∀[w, v, u] ∈  × Γfs × Γstr . (16)
Where the bilinear form, assuming that the structure is continuous and satisfies the boundary conditions (13a)-(13b),
is given by

B([�, �, �], [w, v, u]) ≝(∇�,∇w)Ω − (�t, w)Γfs + �
(

�t + g�, �fw + v
)

Γfs (17)
−(�t, w)Γstr +

(

d0�tt + �t + g�, u
)

Γstr +
(

C� ∶ ∇2�,∇2u
)

Γstr ,

with �f and � scaling parameters introduced for stability and dimensional consistency purposes, as discussed in Section
4, defined in equations (58). Without loss of generality, we assume that there is no external loading acting on the
structure, leading to

L([w, v]) ≝ (uin, w)Γin + (uout, w)Γout . (18)
For the sake of completeness, we proceed with the description of the steps followed to reach the bilinear form

(17). The first row is obtained by multiplying equation (2) against the test function, w, integrating over the domain Ω,
integrating by parts and replacing the normal velocity at the boundaries by the respective kinematic boundary condition
as stated in (4).

Following the monolithic approach described in [1], the last term in the first row of (17) incorporates the dynamic
boundary condition on the free surface, equation (8a) and (12a). Here we multiply such condition against a modified
test function, �fw+v, integrate over the free surface boundary Γfs and weight this contribution by a parameter, �. The
term �fw is added to the test function v to guarantee coercivity of the system, see Section 4.2. The main difference
with respect to [1] is that in the cited work the authors select � = 1

2 as a fixed parameter, while here we analyse the
relation between �f and � that results in a stable formulation.

Similarly, the second and third terms of the second row of (17) enforces the dynamic boundary condition on the
beam surface, equation (8b) and (12b). In this case, however, the fourth order term is integrated by parts twice. In this
process, we assume that the functions belong to H2(Ω), so that the rotations are continuous across the structure. In
addition, the lower-dimensional integrals that appear in the integration by parts cancel when we enforce the boundary
conditions (13a)-(13b), i.e.

(

(∇ ⋅ (C� ∶ ∇2�)) ⋅ nΛ, u
)

Λfs,str = 0,
(

(C� ∶ ∇2�) ⋅ nΛ,∇u
)

Λfs,str = 0.
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Remark 1 (Structure with joints). The weak problem given in (16) assumes the variational space Γstr belongs to
the trace space of H2(Γstr). However, when we have structural joints, the rotations (deflection gradients) are not
continuous at the joint location. Thus, the space of functions � can be defined as the space of trace functions ofH2(Ω)
on Γstr ⧵ Λj, with continuous surface elevation, but discontinuous gradients on Λj. With this definition of the space
Γstr , integrating by parts the fourth order term appearing in (12b), we have that

(

∇2 ∶ (C� ∶ ∇2�), u
)

Γstr
= −

(

∇ ⋅ (C� ∶ ∇2�),∇u
)

Γstr
+
(

(∇ ⋅ (C� ∶ ∇2�)) ⋅ nΛ, u
)

Λstr
(19)

+
(

[[(∇ ⋅ (C� ∶ ∇2�)) ⋅ nΛ]], ⟨u⟩
)

Λj
+
(

⟨∇ ⋅ (C� ∶ ∇2�)⟩, [[unΛ]]
)

Λj
(13b),(13e),[[unΛj ]]=0

=
(

C� ∶ ∇2�,∇2u
)

Γstr
−
((

C� ∶ ∇2�
)

⋅ nΛ,∇u
)

Λstr

−
(

[[
(

C� ∶ ∇2�
)

⋅ nΛ]], ⟨∇u⟩
)

Λj
−
(

⟨C� ∶ ∇2�⟩, [[∇u ⊗ nΛ]]
)

Λj
(13a),(13d),(13c)

=
(

C� ∶ ∇2�,∇2u
)

Γstr
+
(

k�[[∇� ⊗ nΛ]], [[∇u ⊗ nΛ]]
)

Λj
.

With k� ≝
k'
�w

. Then, the bilinear form equivalent to (17) will read

Bj([�, �, �], [w, v, u]) ≝ B([�, �, �], [w, v, u]) +
(

k�[[∇� ⊗ nΛ]], [[∇u ⊗ nΛ]]
)

Λj
. (20)

Since (17) is a particular case of (20) for Λj = ∅, hereinafter we will use the later bilinear form.
3.2. Spatial discretization

Let us consider a FE partition Ωℎ of the domain Ω from which we can construct conforming finite dimensional
spaces for the potential ℎ ⊂  , for the surface elevation at the free surface Γfs,ℎ ⊂ Γfs and for the surface elevationat the structure Γstr,ℎ ⊂ Γstr . We denote by ℎ the set of facets (entities of one dimension lower than the dimension
of Ω) generated by the FE partition Ωℎ. We define as Γℎ the set of facets of ℎ that lie on the boundary of Ω, )Ω, i.e.
Γℎ ≝ ℎ ∩ )Ω. Following this notation, we also define the discrete boundary parts Γb,ℎ ≝ ℎ ∩ Γb, Γin,ℎ ≝ ℎ ∩ Γin,
Γout,ℎ ≝ ℎ ∩ Γout, Γfs,ℎ ≝ ℎ ∩ Γfs and Γstr,ℎ ≝ ℎ ∩ Γstr. In addition, we denote by Λstr,ℎ the set of edges or points
between facets of Γstr,ℎ that are not joints and do not belong to the boundary of Γstr, see Figure 2. We assume that in
the case that the structure has one or multiple joints, these will lie in an edge or point between the FE partition facets
ℎ.

Figure 2: Sketch with the definition of the discrete geometrical entities.

Using this notation, the Galerkin FE formulation equivalent to (16) reads: find [�ℎ, �ℎ, �ℎ] ∈ ℎ × Γfs,ℎ × Γstr,ℎsuch that
Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) = Lℎ([wℎ, vℎ, uℎ]) ∀[wℎ, vℎ, uℎ] ∈ ℎ × Γfs,ℎ × Γstr,ℎ, (21)

where the bilinear form is given by
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Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≝(∇�ℎ,∇wℎ)Ωℎ − (�ℎ,t, wℎ)Γfs,ℎ + �
(

�ℎ,t + g�ℎ, �fwℎ + vℎ
)

Γfs,ℎ (22)
−(�ℎ,t, wℎ)Γstr,ℎ +

(

d0�ℎ,tt + �ℎ,t + g�ℎ, uℎ
)

Γstr,ℎ
+
(

C� ∶ ∇2�ℎ,∇2uℎ
)

Γstr,ℎ +
(

k�[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λj ,

and the linear right hand side is
Lℎ([wℎ, vℎ]) ≝ (uin, wℎ)Γin,ℎ + (uout, wℎ)Γout,ℎ . (23)

Note that the formulation defined by (21)-(23) assumes that the FE spaces are defined in H2(Γstr ⧵ Λj), which
requires 1 continuity across elements in the structure, i.e continuous gradients between elements. This condition is
satisfied by certain FE types such as the Morley [36], Argyris [4] or NURBS-based FE [13]. Nonetheless, we propose
an alternative formulation that can be generalized toH1(Γstr) FE defined, for instance, by Lagrange polynomials. This
formulation is based on a Continuous/Discontinuous Galerkin (C/DG) approach for fourth order operators, [18], where
the discrete functions are continuous at the element nodes, but the gradient is discontinuous. The continuity of first
order derivatives is weakly enforced via an interior penalty approach.

The resulting C/DG formulation reads: find [�ℎ, �ℎ, �ℎ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ such that
B̂ℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ]) = Lℎ([wℎ, vℎ, uℎ]) ∀[wℎ, vℎ, uℎ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ, (24)

where
B̂ℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≝Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) (25)

−
(

⟨C� ∶ ∇2�ℎ⟩, [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ −
(

[[∇�ℎ ⊗ nΛ]], ⟨C� ∶ ∇2uℎ⟩
)

Λstr,ℎ

+

D̂�

ℎ
(

[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ ,

With ℎ the characteristic element size, D̂� ≝
EI

(1−�2) a constant that depends on the material properties and 
 a constant
that can be tuned to guaranty stability, see Section 4. The first term of the second row in (25) is required for consistence.
It originates from the integration by parts of the fourth order term in the plate equation after assuming continuity of
test functions across boundary elements and weakly enforcing

[[(∇ ⋅ (C� ∶ ∇2�ℎ)) ⋅ nΛ]] = 0 on Λstr,ℎ, (26a)
[[(C� ∶ ∇2�ℎ) ⋅ nΛ]] = 0 on Λstr,ℎ, (26b)

i.e. continuity of shear forces and moments across structure elements. The second term in the second row enforces dual
consistency, and improves overall accuracy of the method. It penalizes the jump of surface elevation gradients across
structural elements. The term appearing in the last row of (25) is added for stability purposes, while also penalizing
the jump of gradients across the structural elements.

Hereinafter we will work with the formulation defined by equations (24)-(25). The variational spaces ̂ℎ, ̂Γfs,ℎ
and ̂Γstr,ℎ will be given by

̂ℎ ≝
{

wℎ ∈ 0(Ω) ∶ wℎ|K ∈ ℙr(K),∀K ∈ Ωℎ
}

, (27)
̂Γfs,ℎ ≝

{

wℎ|E ∶ wℎ ∈ ̂ℎ,∀E ∈ Γfs
}

, (28)
̂Γstr,ℎ ≝

{

wℎ|E ∶ wℎ ∈ ̂ℎ,∀E ∈ Γstr,ℎ
}

, (29)
where ℙr(K) is the space of Lagrange polynomials of degree r ≥ 2 in an element K .
3.3. Time discretization

The forms given in (21) or (24) describe a semi-discrete system of equations, i.e. discrete in space and continuous
in time, resulting in a system of 2nd order ordinary differential equations (ODEs). In this work we consider two
approaches to find the solution to the transient problem: a frequency domain and a time domain approach.
O. Colomés et al.: Preprint submitted to Elsevier Page 8 of 35



A monolithic FE formulation for hydroelastic analysis of VLFS

3.3.1. Frequency domain
The analysis of free surface flows in the Airy wave theory, described by linear potential flow, is suitable for a

frequency domain formulation. This is also the case of dynamic analysis of linear structural response. When defining
the formulation in the frequency domain, the response, i.e surface elevation and velocity potential, is assumed to be
harmonic. That is, a space and time dependent variable, �(x, t), can be given in terms of a prescribed frequency, !,
and a time-independent variable, �̄(x) as

�(x, t) = �̄(x) exp(−i!t). (30)
Under this assumption, given an incoming wave frequency, !, the fully discrete problem reduces to find the set of

time-independent and complex-valued fields, in our case �̄(x), �̄(x) and �̄(x). To simplify notation, in this subsection
we will neglect the bar and hereinafter assume that � ≝ �̄, � ≝ �̄ and � ≝ �̄. Hence, the final discrete problem in the
frequency domain will read: find [�ℎ, �ℎ, �ℎ] ∈ ̂!ℎ × ̂!Γfs,ℎ × ̂!Γstr,ℎ such that

B̂!ℎ ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) = L
!
ℎ ([wℎ, vℎ, uℎ]) ∀[wℎ, vℎ, uℎ] ∈ ̂!ℎ × ̂!Γfs,ℎ × ̂!Γstr,ℎ, (31)

with
B̂!ℎ ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≝(∇�ℎ,∇wℎ)Ωℎ + (i!�ℎ, wℎ)Γfs,ℎ + �

(

g�ℎ − i!�ℎ, �!fwℎ + vℎ
)

Γfs,ℎ
(32)

+(i!�ℎ, wℎ)Γstr,ℎ +
(

(g − !2d0)�ℎ − i!�ℎ, uℎ
)

Γstr,ℎ
+
(

C� ∶ ∇2�ℎ,∇2uℎ
)

Γstr,ℎ +
(

k�[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λj
−
(

⟨C� ∶ ∇2�ℎ⟩, [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ −
(

[[(∇�ℎ ⊗ nΛ]], ⟨C� ∶ ∇2uℎ⟩
)

Λstr,ℎ

+

D̂�

ℎ
(

[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ ,

and
L!ℎ ([wℎ, vℎ, uℎ]) ≝ Lℎ([wℎ, vℎ, uℎ]). (33)

Here, the stabilization parameter �!f appearing in (32) is defined as �!f ≝ −i!
g

1−�
� , see Section 4 for further details

on the justification of this definition.
It is important to highlight that the FE spaces ̂!ℎ and ̂!Γ,ℎ are finite-dimensional spaces of complex-valued func-

tions, composed by real-valued shape functions and complex-valued degrees of freedom.
3.3.2. Time domain

As an alternative to the frequency domain approach, instead of assuming an harmonic response, one can discretize
in time the semi-discrete system given by equation (24). Here, since we have a second-order ODE, we use the so
called Newmark-beta time discretization scheme [38]. Let us consider a uniform discretization of the time domain,
with a constant time step size Δt. At a given time step n+ 1, with tn+1 = tn +Δt, an unknown, xn+1, and its first time
derivative, are defined by

xn+1t ≝ xnt + Δt
[

(1 − 
NB)xntt + 
NBx
n+1
tt

]

, (34)
xn+1 ≝ xn + Δtxnt + Δt

2
[(1
2
− �NB

)

xntt + �NBx
n+1
tt

]

, (35)
where 
NB and �NB are two coefficients that determine the stability and accuracy of the scheme [21]. In this work
we will use the pair 
NB = 0.5 and �NB = 0.25, which results in a second order accurate and unconditionally stable
scheme.

Doing some manipulations, we can obtain an expression for the first and second time derivatives at n + 1. These
derivatives depend on the unknown solution xn+1, and the known solution and derivatives, {xn, xnt , xntt

},

xn+1t = �t
(

xn+1 − xn
)

+
1 − 
NB
�NB

xnt + Δt
1 − 
NB
2�NB

xntt, (36)

O. Colomés et al.: Preprint submitted to Elsevier Page 9 of 35



A monolithic FE formulation for hydroelastic analysis of VLFS

xn+1tt = �tt
(

xn+1 − xn
)

− 1
�NBΔt

xnt +
1 − 2�NB
2�NB

xntt (37)

where �t = 
NB
�NBΔt and �tt =

1
�NBΔt2 .Using the time discretization given by equations (36)-(37) for the potential and surface elevation time derivatives,

we obtain the following fully discrete problem in the time domain: find [�n+1ℎ , �n+1ℎ , �n+1ℎ ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ suchthat
B̂n+1ℎ ([�n+1ℎ , �n+1ℎ , �n+1ℎ ], [wℎ, vℎ, uℎ]) = Ln+1ℎ ([wℎ, vℎ, uℎ]) ∀[wℎ, vℎ, uℎ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ, (38)

where
B̂n+1ℎ ([�n+1ℎ , �n+1ℎ �n+1ℎ ], [wℎ, vℎ, uℎ]) ≝(∇�n+1ℎ ,∇wℎ)Ωℎ − (�t�

n+1
ℎ , wℎ)Γfs,ℎ (39)

+�
(

�t�
n+1
ℎ + g�n+1ℎ , �fwℎ + vℎ

)

Γfs,ℎ
−(�t�n+1ℎ , wℎ)Γstr,ℎ +

(

�ttd0�
n+1
ℎ + �t�n+1ℎ + g�n+1ℎ , uℎ

)

Γstr,ℎ
+
(

C� ∶ ∇2�n+1ℎ ,∇2uℎ
)

Γstr,ℎ +
(

k�[[∇�n+1ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λj
−
(

⟨C� ∶ ∇2�n+1ℎ ⟩, [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ
−
(

[[∇�n+1ℎ ⊗ nΛstr,ℎ ]], ⟨C� ∶ ∇
2uℎ⟩

)

Λstr,ℎ

+

D̂�

ℎ
(

[[∇�n+1ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ ,

and
Ln+1ℎ ([wℎ, vℎ, uℎ]) ≝(uin, wℎ)Γin,ℎ + (uout, wℎ)Γout,ℎ (40)

−
(

�t�
n
ℎ −

1 − 
NB
�NB

�nℎ,t − Δt
1 − 
NB
2�NB

�nℎ,tt, wℎ

)

Γfs,ℎ

+�
(

�t�
n
ℎ −

1 − 
NB
�NB

�nℎ,t − Δt
1 − 
NB
2�NB

�nℎ,tt, �fwℎ + vℎ

)

Γfs,ℎ

−
(

�t�
n
ℎ −

1 − 
NB
�NB

�nℎ,t − Δt
1 − 
NB
2�NB

�nℎ,tt, wℎ

)

Γstr,ℎ

+
(

d0

(

�tt�
n
ℎ +

1
�NBΔt

�nℎ,t −
1 − 2�NB
2�NB

�nℎ,tt

)

, uℎ

)

Γstr,ℎ

+
(

�t�
n
ℎ −

1 − 
NB
�NB

�nℎ,t − Δt
1 − 
NB
2�NB

�nℎ,tt, uℎ

)

Γstr,ℎ
.

In equation (39), the stabilization parameter is defined as �f ≝ �t
g
(1−�)
� for the system to be stable, see Section 4.

4. Numerical analysis
In this section we prove statements of consistency, coercivity, boundedness and energy conservation for the dis-

crete formulation proposed in this work. In Section 4.2 we will first demonstrate these properties for the formulation
without discontinuities, i.e. equation (21). After, in Section 4.3, we will extend the analysis to include the C/DG
formulation (24).
4.1. Preliminary definitions and theorems

Let us establish some definitions and theorems that will be later used in the numerical analysis of the formulation.
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Definition 1. For any w we define theH1-norm in Ω as

‖w‖2H1(Ω) = ‖w‖2Ω + ‖∇w‖2Ω . (41)

Corollary 1. For w ∈ H1(Ω) we can bound the gradient. That is,

‖∇w‖Ωℎ ≤ ‖w‖H1(Ωℎ), ∀w ∈ H1(Ω). (42)
Proof. The statement is a direct consequence of the definition of theH1Ω-norm.
Definition 2. For any w ∈ H1(Ω) define by extension the trace operator 
)Ω ∶ H1(Ω) → L2()Ω) such that


)Ωw = w|)Ω,∀w ∈ C∞(Ω). (43)
Theorem 1 (Trace theorem of Sobolev spaces). Let Ω be a bounded simply connected Lipschitz domain. Then, the
trace operator 
)Ω is a bounded linear operator fromH1(Ω) to L2()Ω). That is,

‖

‖


)Ωw‖‖)Ω ≤ C)Ω ‖w‖H1(Ω) . (44)
With C)Ω a constant that only depends on )Ω.

See [17] for a proof of Theorem 1.
Theorem 2. Let Ω be a bounded connected Lipschitz domain and f be a linear form from H1(Ω) with a non-zero
restriction on non-zero constant functions. Then, there is a constant CΩ > 0 such that

CΩ‖w‖H1(Ω) ≤ ‖∇w‖Ω + |f (w)|, ∀w ∈ H1(Ω). (45)
Let us define the function f appearing in Theorem 2 as
f (w) ≝ �f��t‖
Γfsw‖Γfs ,

with 
Γfs the trace operator as defined in equation (43). Note that f is a linear form on H1(Ω) and its restriction on
non-zero constant functions is non-zero, which holds for any �f , �, �t > 0 and any open boundary portion Γfs ⊆ )Ω
with non-zero measure, i.e. |Γfs| ≝ meas(Γfs) > 0. Then, we have that

|f (w)| = �f��t‖
Γfsw‖Γfs = �f��t‖w‖Γfs , ∀w ∈ H1(Ω). (46)
Corollary 2. For w ∈ H1(Ω) we can bound theH1(Ω)-norm as follows,

CΩ‖w‖H1(Ω) ≤ ‖∇w‖Ω + �f��t‖w‖Γfs , ∀w ∈ H1(Ω). (47)
Proof. Introducing (46) into Theorem 2 proofs the statement.
Theorem 3. Let Ω be a bounded simply connected Lipschitz domain and Ωe an element of the FE triangulation of Ω
with characteristic element size ℎe. Then there is a constant CI such that

‖w‖2)Ωe ≤ CI
(

ℎ−1e ‖w‖2Ωe + ℎe‖∇‖
2
Ωe

)

. (48)
See [5] for more details.
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4.2. Continuous formulation
We start this section by demonstrating the consistency and energy conservation of the semi-discrete form (21). That

is, we assume that we use a set of FE spaces such that �ℎ ∈ H2(Γstr ⧵ Λj), i.e. functions with continuous gradients.
Proposition 1 (Consistency). The semi-discrete problem (21) is consistent. That is, the exact solution [�, �, �] ∈
 × Γfs × Γstr satisfies the approximate problem

Bℎ([�, �, �], [wℎ, vℎ, uℎ]) = Lℎ([wℎ, vℎ, uℎ]) ∀[wℎ, vℎ, uℎ] ∈ ℎ × Γfs,ℎ × Γstr,ℎ. (49)
Proof. The consistency statement results from integrating by parts on each element the terms (∇�,∇wℎ)Ωℎ and
(

C� ∶ ∇2�,∇2uℎ
)

Γstr,ℎ appearing in (22), using the strong form of the equations (2) and (10), and boundary condi-
tions (4), (5) and (13).
Proposition 2 (Energy conservation). The semi-discrete problem (21) is energy conserving for any � such that 0 <
� < 1. That is,

dEtotal

dt
= 0. (50)

With

Etotal ≝Ekin,flow + Epot,flow + Ekin,str + Eela,str, (51)
Ekin,flow ≝1

2
‖∇�‖2Ω , (52)

Epot,flow ≝g
2

(

‖�‖2Γfs + ‖�‖2Γstr

)

, (53)
Ekin,str ≝

1
2
‖

‖

‖

d1∕20 �t
‖

‖

‖

2

Γstr
, (54)

Eela,str ≝
1
2
‖

‖

‖

C1∕2 ∶ ∇2�‖‖
‖

2

Γstr
+ 1
2
‖

‖

‖

k1∕2� [[∇�ℎ ⊗ nΛ]]
‖

‖

‖

2

Λj
. (55)

Proof. Let us select the set of test functions as [wℎ, vℎ, uℎ] =
[

�ℎ,t,
1
� �ℎ,t − �f�ℎ,t, �ℎ,t

]

∈ ℎ × Γfs,ℎ × Γstr,ℎ.
Introducing them into (21) we have that, for uin = uout = 0, the following statement holds

0 =Bℎ([�ℎ, �ℎ, �ℎ], [�ℎ,t,
1
�
�ℎ,t − �f�ℎ,t, �ℎ,t]) − Lℎ([�ℎ,t,

1
�
�ℎ,t − �f�ℎ,t, �ℎ,t]) (56)

=(∇�ℎ,∇�ℎ,t)Ωℎ − (�ℎ,t, �ℎ,t)Γfs,ℎ + �
(

�ℎ,t + g�ℎ, �f�ℎ,t +
1
�
�ℎ,t − �f�ℎ,t

)

Γfs,ℎ
− (�ℎ,t, �ℎ,t)Γstr,ℎ +

(

d0�ℎ,tt + �ℎ,t + g�ℎ, �ℎ,t
)

Γstr,ℎ
+
(

C� ∶ ∇2�ℎ,∇2�ℎ,t
)

Γstr,ℎ +
(

k�[[∇�ℎ ⊗ nΛ]], [[∇�ℎ,t ⊗ nΛ]]
)

Λj

=1
2
d
dt

‖

‖

∇�ℎ‖‖
2
Ωℎ
+
g
2
d
dt

‖

‖

�ℎ‖‖
2
Γfs,ℎ +

d0
2
d
dt

‖

‖

�ℎ,t‖‖
2
Γstr,ℎ +

g
2
d
dt

‖

‖

�ℎ‖‖
2
Γstr,ℎ

+ 1
2
d
dt

‖

‖

‖

C1∕2 ∶ ∇2�‖‖
‖

2

Γstr
+ 1
2
d
dt

‖

‖

‖

k1∕2� [[∇�ℎ ⊗ nΛ]]
‖

‖

‖

2

Λj
=
dEtotal
dt

.

Note, that the selection for vℎ imposes a mild compatibility requirement on the discretization spaces in order for the
proof to hold, viz. 
Γfs () ∈ Γfs .

Let us now consider the fully discrete problem in the time domain given by equation (38). To simplify notation
we will omit the super-index related to the time step (⋅)n+1. We also note that the analysis is done for the fully discrete
formulation in the time domain, but the same derivations also hold for the frequency domain. In the later case, instead
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of the constants �t and �tt, we have −i! and −!2, respectively. The fully discrete bilinear form in time domain for the
CG case is given by

Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≝(∇�ℎ,∇wℎ)Ωℎ − (�t�ℎ, wℎ)Γfs,ℎ + �
(

�t�ℎ + g�ℎ, �fwℎ + vℎ
)

Γfs,ℎ (57)
−(�t�ℎ, wℎ)Γstr,ℎ +

(

�ttd0�ℎ + �t�ℎ + g�ℎ, uℎ
)

Γstr,ℎ +
(

C� ∶ ∇2�ℎ,∇2uℎ
)

Γstr,ℎ
+
(

k�[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λj .

Let us define the stabilization parameter �f as

�f ≝
(1 − �)�t
�g

. (58)

This choice for �f ensures in the coercivity proof the second term in Eq (57) cancels a similar term originating from
the third term.
Corollary 3. Selecting �f as in equation (58) and introducing it into (57) results in the following bilinear form,

Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) =(∇�ℎ,∇wℎ)Ωℎ (59)

−��t(�ℎ, wℎ)Γfs,ℎ +
(1 − �)�2t

g
(

�ℎ, wℎ
)

Γfs,ℎ
+ ��t

(

�ℎ, vℎ
)

Γfs,ℎ
+ �g

(

�ℎ, vℎ
)

Γfs,ℎ

−�t(�ℎ, wℎ)Γstr,ℎ + (�ttd0 + g)
(

�ℎ, uℎ
)

Γstr,ℎ
+ �t

(

�ℎ, uℎ
)

Γstr,ℎ

+
(

C� ∶ ∇2�ℎ,∇2uℎ
)

Γstr,ℎ
+
(

k�[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λj
.

Proposition 3 (Coercivity). If �f is given by (58), the bilinear form (57) is coercive for any � such that 0 < � < 1.
That is, there exists a constant C > 0 such that

Bℎ([wℎ, vℎ, uℎ], [wℎ, vℎ, uℎ]) ≥ Cc||||||[wℎ, vℎ, uℎ]||||||
2, ∀[wℎ, vℎ, uℎ] ∈ ℎ × Γfs,ℎ × Γstr,ℎ, (60)

with

|

|

|

|

|

|

[wℎ, vℎ, uℎ]||||||
2 ≝‖wℎ‖2H1(Ωℎ)

+ ‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖

2

Γfs,ℎ
+ ‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖

2

Γstr,ℎ
(61)

+ ‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖

2

Γ̃str,ℎ
+ ‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖

2

Λj
.

Proof. From the bilinear form defined in equation (59) and using equation (47), we can write

Bℎ([wℎ, vℎ, uℎ], [wℎ, vℎ, uℎ]) ≝‖∇wℎ‖2Ωℎ +

(

(1 − �)�2t
g

)

‖

‖

wℎ‖‖
2
Γfs,ℎ (62)

+ ‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖

2

Γfs,ℎ
+ ‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖

2

Γstr,ℎ

+ ‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖

2

Γstr,ℎ
+ ‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖

2

Λj
≥ CΩ‖wℎ‖2H1(Ωℎ)

+ ‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖

2

Γfs,ℎ
+ ‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖

2

Γstr,ℎ

+ ‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖

2

Γstr,ℎ
+ ‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖

2

Λj
≥ Cc||||||[wℎ, vℎ, uℎ]||||||

2.

Defining the coercivity constant as Cc ≝ min(CΩ, 1) > 0 proves Proposition 3.
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Proposition 4 (Boundedness). If �f is given by (58), the bilinear form (57) is bounded for any � such that 0 < � < 1.
That is, there exists a constant Cb > 0 such that

Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≤ Cb||||||[�ℎ, �ℎ, �ℎ]||||||||||||[wℎ, vℎ, uℎ]||||||, ∀[�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ] ∈ ℎ×Γfs,ℎ×Γstr,ℎ,
(63)

with |||⋅||| defined in eq (61).
Proof. Let us define the minimum draft dmin0 as the minimum value of the draft for any point in the structure, i.e.
dmin0 ≝ minx∈Γstr d0(x). Starting from the bilinear form defined in equation (59) and using Schwarz inequality, we
have that

Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≤ ‖

‖

∇�ℎ‖‖Ωℎ
‖

‖

∇wℎ‖‖Ωℎ + �t

(

�
g

)1∕2
‖

‖

‖

(�g)1∕2�ℎ
‖

‖

‖Γfs,ℎ
‖

‖

wℎ‖‖Γfs,ℎ (64)

+(1 − �)�2t g
−1

‖

‖

�ℎ‖‖Γfs,ℎ
‖

‖

wℎ‖‖Γfs,ℎ + �t
(

�
g

)1∕2
‖

‖

�ℎ‖‖Γfs,ℎ
‖

‖

‖

(�g)1∕2vℎ
‖

‖

‖Γfs,ℎ
+ ‖

‖

‖

(�g)1∕2�ℎ
‖

‖

‖Γfs,ℎ
‖

‖

‖

(�g)1∕2vℎ
‖

‖

‖Γfs,ℎ
+�t(�ttdmin0 + g)−1∕2 ‖‖

‖

(�ttd0 + g)1∕2�ℎ
‖

‖

‖Γstr,ℎ
‖

‖

wℎ‖‖Γstr,ℎ

+ ‖

‖

‖

(�ttd0 + g)1∕2�ℎ
‖

‖

‖Γstr,ℎ
‖

‖

‖

(�ttd0 + g)1∕2uℎ
‖

‖

‖Γstr,ℎ
+�t(�ttdmin0 + g)−1∕2 ‖

‖

�ℎ‖‖Γstr,ℎ
‖

‖

‖

(�ttd0 + g)1∕2uℎ
‖

‖

‖Γstr,ℎ
+ ‖

‖

‖

C1∕2� ∶ ∇2�ℎ
‖

‖

‖Γstr,ℎ
‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖Γstr,ℎ
+ ‖

‖

‖

k1∕2� [[∇�ℎ ⊗ nΛ]]
‖

‖

‖Γstr,ℎ
‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖Λj
.

Using equations (42) and (44), and noting that ‖w‖Γfs ≤ ‖w‖)Ω and ‖w‖Γstr ≤ ‖w‖)Ω, we find that

Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≤ ‖

‖

�ℎ‖‖H1(Ωℎ)
‖

‖

wℎ‖‖H1(Ωℎ)
+ C)Ω�t

(

�
g

)1∕2
‖

‖

‖

(�g)1∕2�ℎ
‖

‖

‖Γfs,ℎ
‖

‖

wℎ‖‖H1(Ωℎ)
(65)

+C2)Ω(1 − �)�
2
t g
−1

‖

‖

�ℎ‖‖H1(Ωℎ)
‖

‖

wℎ‖‖H1(Ωℎ)

+C)Ω�t

(

�
g

)1∕2
‖

‖

�ℎ‖‖H1(Ωℎ)
‖

‖

‖

(�g)1∕2vℎ
‖

‖

‖Γfs,ℎ
+ ‖

‖

‖

(�g)1∕2�ℎ
‖

‖

‖Γfs,ℎ
‖

‖

‖

(�g)1∕2vℎ
‖

‖

‖Γfs,ℎ
+C)Ω�t(�ttdmin0 + g)−1∕2 ‖‖

‖

(�ttd0 + g)1∕2�ℎ
‖

‖

‖Γstr,ℎ
‖

‖

wℎ‖‖H1(Ωℎ)

+ ‖

‖

‖

(�ttd0 + g)1∕2�ℎ
‖

‖

‖Γstr,ℎ
‖

‖

‖

(�ttd0 + g)1∕2uℎ
‖

‖

‖Γstr,ℎ
+C)Ω�t(�ttdmin0 + g)−1∕2 ‖

‖

�ℎ‖‖H1(Ωℎ)
‖

‖

‖

(�ttd0 + g)1∕2uℎ
‖

‖

‖Γstr,ℎ
+ ‖

‖

‖

C1∕2� ∶ ∇2�ℎ
‖

‖

‖Γstr,ℎ
‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖Γstr,ℎ
+ ‖

‖

‖

k1∕2� [[∇�ℎ ⊗ nΛ]]
‖

‖

‖Γstr,ℎ
‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖Λj
.
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Which can be written in matrix vector form as follows

Bℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

‖�ℎ‖H1(Ωℎ)
‖

‖

‖

(�g)1∕2 �ℎ
‖

‖

‖Γfs,ℎ
‖

‖

‖

(

�ttd0 + g
)1∕2 �ℎ

‖

‖

‖Γstr,ℎ
‖

‖

‖

C1∕2� ∶ ∇2�ℎ
‖

‖

‖Γ̃str,ℎ
‖

‖

‖

k1∕2� [[∇�ℎ ⊗ nΛ]]
‖

‖

‖Λj

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

‖wℎ‖H1(Ωℎ)
‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖Γfs,ℎ
‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖Γstr,ℎ
‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖Γ̃str,ℎ
‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖Λj

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (66)

with A a symmetric matrix defined by

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 + (1−�)�2t
g C2)Ω C)Ω�t

(

�
g

)1∕2
C)Ω�t(�ttdmin0 + g)−1∕2 0 0

C)Ω�t
(

�
g

)1∕2
1 0 0 0

C)Ω�t(�ttdmin0 + g)−1∕2 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (67)

Using arguments analogous in the proof of the Gershgorin circle theorem, if we define the boundedness constant Cbas the maximum eigenvalue of the matrix A, that is

Cb = maxi

(

∑

j
|Aij|

)

, (68)

we arrive at the bound (63).
Using the Lax-Milgram theorem, see for instance [19], together with Proposition 3 and Proposition 4, we can

conclude that the semi-discrete problem (21) has a unique solution.
4.3. Discontinuous formulation

Let us now analyse the CDG formulation as stated in the semi-discrete form (24).
Proposition 5 (Consistency of the C/DG formulation). The semi-discrete problem (24) is consistent. That is, the exact
solution [�, �, �] ∈  × Γfs × Γstr satisfies the approximate problem

B̂ℎ([�, �, �], [wℎ, vℎ, uℎ]) = Lℎ([wℎ, vℎ, uℎ]) ∀[wℎ, vℎ, uℎ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ. (69)
Proof. The consistency statement (69) results from the same reasoning as in Proposition 1, noting that the terms
involving [[∇� ⊗ nΛ]] appearing in equation (25) vanish since the solution gradients are continuous across element
boundaries not belonging to Λj.

The fully discrete C/DG bilinear form in the time domain, again omitting the super-index related to the time step
(⋅)n+1, reads

B̂ℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≝(∇�ℎ,∇wℎ)Ωℎ − (�t�ℎ, wℎ)Γfs,ℎ + �
(

�t�ℎ + g�ℎ, �fwℎ + vℎ
)

Γfs,ℎ (70)
−(�t�ℎ, wℎ)Γstr,ℎ +

(

�ttd0�ℎ + �t�ℎ + g�ℎ, uℎ
)

Γstr,ℎ +
(

C� ∶ ∇2�ℎ,∇2uℎ
)

Γstr,ℎ
+
(

k�[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λj −
(

⟨C� ∶ ∇2�ℎ⟩, [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ

−
(

[[∇�ℎ ⊗ nΛstr,ℎ ]], ⟨C� ∶ ∇
2uℎ⟩

)

Λstr,ℎ
+

D̂�

ℎ
(

[[∇�ℎ ⊗ nΛ]], [[∇uℎ ⊗ nΛ]]
)

Λstr,ℎ .
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Proposition 6 (Coercivity of the C/DG formulation). If �f is given by (58) and 
 > 2CI , the bilinear form (70) is
coercive for any � such that 0 < � < 1. That is, there exists a constant Ĉc > 0 such that

B̂ℎ([wℎ, vℎ, uℎ], [wℎ, vℎ, uℎ]) ≥ Ĉc||||||[wℎ, vℎ, uℎ]||||||
2
CDG, ∀[wℎ, vℎ, uℎ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ, (71)

with

|

|

|

|

|

|

[wℎ, vℎ, uℎ]||||||
2
CDG ≝‖wℎ‖2H1(Ωℎ)

+ ‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖

2

Γfs,ℎ
+ ‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖

2

Γstr,ℎ
(72)

+ ‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖

2

Γ̃str,ℎ
+ ‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖

2

Λj
+
‖

‖

‖

‖

‖

‖

(

D̂�

ℎ

)1∕2

[[∇uℎ ⊗ nΛ]]
‖

‖

‖

‖

‖

‖

2

Λstr,ℎ

.

Proof. Starting from the second step in equation (62) we have that
B̂ℎ([wℎ, vℎ, uℎ], [wℎ, vℎ, uℎ]) ≥ CΩ‖wℎ‖2H1(Ωℎ)

+ ‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖

2

Γfs,ℎ
+ ‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖

2

Γstr,ℎ
(73)

+ ‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖

2

Γstr,ℎ
+ ‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖

2

Λj

− 2
(

[[∇uℎ ⊗ nΛstr,ℎ ]], ⟨C� ∶ ∇
2uℎ⟩

)

Λstr,ℎ

+
‖

‖

‖

‖

‖

‖

(


D̂�

ℎ

)1∕2

[[∇uℎ ⊗ nΛ]]
‖

‖

‖

‖

‖

‖

2

Λstr,ℎ
.

Using Young’s �-inequality and the inverse inequality stated in Theorem 3, one can bound the sixth term in equation
(73) as follows

2
|

|

|

|

(

⟨C� ∶ ∇2vℎ⟩, [[∇vℎ ⊗ nΛ]]
)

Λstr,ℎ
|

|

|

|

≤ � ‖‖
‖

ℎ1∕2⟨C1∕2� ∶ ∇2vℎ⟩
‖

‖

‖

2

Λstr,ℎ
+ 1
�
‖

‖

‖

ℎ−1∕2[[∇vℎ ⊗ nΛ]]
‖

‖

‖

2

Λstr,ℎ
(74)

≤
∑

E∈Γstr,ℎ
�CID̂�

‖

‖

‖

C1∕2� ∶ ∇2vℎ
‖

‖

‖

2

E
+ 1
�
‖

‖

‖

ℎ−1∕2[[∇vℎ ⊗ nΛ]]
‖

‖

‖

2

Λstr,ℎ

=
�= 1

2CI D̂�

∑

E∈Γstr,ℎ

1
2
‖

‖

‖

C1∕2� ∶ ∇2vℎ
‖

‖

‖

2

E
+

(

2CID̂�

ℎ

)

‖

‖

[[∇vℎ ⊗ nΛ]]‖‖
2
Λstr,ℎ .

Introducing (74) into (73) we have that
B̂ℎ([wℎ, vℎ, uℎ], [wℎ, vℎ, uℎ]) ≥ CΩ‖wℎ‖2H1(Ωℎ)

+ ‖

‖

‖

(�g)1∕2 vℎ
‖

‖

‖

2

Γfs,ℎ
+ ‖

‖

‖

(

�ttd0 + g
)1∕2 uℎ

‖

‖

‖

2

Γstr,ℎ
(75)

+ 1
2
‖

‖

‖

C1∕2� ∶ ∇2uℎ
‖

‖

‖

2

Γstr,ℎ
+ ‖

‖

‖

k1∕2� [[∇uℎ ⊗ nΛ]]
‖

‖

‖

2

Λj

+ (
 − 2CI )
‖

‖

‖

‖

‖

‖

(

D̂�

ℎ

)1∕2

[[∇uℎ ⊗ nΛ]]
‖

‖

‖

‖

‖

‖

2

Λstr,ℎ
≥ Ĉc||||||[wℎ, vℎ, uℎ]||||||

2
CDG.

Defining the coercivity constant as Ĉc ≝ min(CΩ, 1, (
 − 2CI )), which is greater than zero provided that 
 > 2CI , weprove Proposition 6.
Proposition 7 (Boundedness of the C/DG formulation). If �f is given by (58), the bilinear form (70) is bounded for
any � such that 0 < � < 1. That is, there exists a constant Ĉb > 0 such that

B̂ℎ([�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ]) ≤ Ĉb||||||[�ℎ, �ℎ, �ℎ]||||||CDG||||||[wℎ, vℎ, uℎ]||||||CDG, (76)
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∀ [�ℎ, �ℎ, �ℎ], [wℎ, vℎ, uℎ] ∈ ̂ℎ × ̂Γfs,ℎ × ̂Γstr,ℎ,

with |||⋅|||CDG defined in eq (72).
Proof. Statement (76) follows from the same arguments used in Proposition 4 incorporating the inequality derived in
equation (74). The reader is referred to [18] for a step-by-step proof.

Again, using the Lax-Milgram theorem together with Proposition 6 and Proposition 7, we can conclude that the
semi-discrete problem (24) has a unique solution.

5. Numerical results
In this section we assess the behavior of the proposed formulation for a variety of two and three-dimensional tests,

analysing the accuracy, convergence and conservation properties, as well as comparing with analytical and experimen-
tal solutions that can be found in existing literature.

We start with a problem with analytical solution for the 2-dimensional case, that is the evolution of a floating
infinite beam subject to an initial harmonic condition. After, we assess the performance of the method for finite beams
with elastic joints in the frequency and time domains, followed by the study of a finite floating beam over irregular
sea bed. Finally, we assess the behavior of a floating plate in a 3-dimensional domain and we show that the proposed
approach is suitable to solve problems with structures with arbitrary shape.
5.1. Implementation remarks

The monolithic FE formulation and other algorithms used in the experiments below have been implemented using
the Julia programming language [7] version 1.7 and the Gridap finite element library [6] version 0.17. Gridap is
a free and open-source finite element library fully implemented in Julia. One of its main distinctive features is its
user interface, which has a high-level syntax that resembles the notation used to define weak forms mathematically.
Internally, Gridap leverages the Julia JIT compiler to generate an efficient finite assembly loop from the user input
automatically [48], which results in efficient and easy to write user code. The formulations presented in this paper can
be easily implemented using the high-level interface of Gridap in a convenient way. See, e.g., Figure 3 that contains the
implementation of the numerical example in Section 5.2. Note that, even though the proposed monolithic formulation
is rather complex, its implementation in Gridap can be done in few lines of code. In particular, the definition of the
weak form is very compact and has a clear connection with the corresponding mathematical notation. We have taken
advantage of the Gridap support for multi-field PDEs and the possibility to combine interpolation spaces defined on
geometries with different spatial dimensions. A crucial feature for the implementation of the monolithic formulation
is the capacity of Gridap to integrate weak forms on domains different from the ones used to define the interpolation
spaces. In particular, this makes possible to integrate the jump terms onΛ. This computation is particularly challenging
from an implementation point of view since it involves geometries with three different spatial dimensions. E.g, in
2D, Λ is a 0-dimensional domain, the elevation � is defined on the 1-dimensional domain Γstr , and the code that
implements the interpolation space for � is aware that Γstr is on the boundary of the 2-dimensional domainΩ. This last
implementation ingredient is used internally to compute the terms that involve operations between the elevation � and
the potential � since the latter is defined on Ω. To our best knowledge, other general-purpose finite element libraries
are not able to handle this particular case, at least via such a compact high-level user interface. E.g., at the time of
writing FEniCS is able to integrate weak forms on geometries with d and d − 1 space dimensions at most [15] and,
thus, cannot be used to implement the formulation of this paper easily, which requires geometries with d, d − 1, and
also d −2 space dimensions. The numerical results below have been computed on a laptop with an Intel(R) Core(TM)
i7-8665U CPU at 1.90GHz with approximately 16GiB of RAM and should be reproducible on a machine with similar
characteristics. The software used to generate the results presented in this section is available at the registered Julia
package MonolithicFEMVLFS.jl [12].
5.2. Infinite beam in time domain

Let us consider an infinite beam floating on top of an infinite 2-dimensional potential flow domain. This setting is
achieved by considering periodic boundary conditions in the vertical boundaries, Γperiodic , see Figure 4. Here we set
L = 2� m andH = 1.0m. Let us also consider a traveling wave given by the following surface elevation and potential
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1 using Gridap

2 using WriteVTK

3

4 # Parameters

5 L = 2.0*π; H = 1.0; k = 10; η₀ = 0.01; g = 9.81

6 ρ_w = 1.0e3; λ = 2*π/k; ω = √(g*k*tanh(k*H))

7 ρ_b = 1.0e2; h_b = 1.0e-2; d₀ = ρ_b*h_b/ρ_w

8 Dρ = ρ_b*h_b*ω^2/(k^4)/ρ_w

9 dt = 0.001; γ_t = 0.5; β_t = 0.25; t₀ = 0.0; tf = 1.0

10 order = 2; degree = 2*order; n = 30; h = L/n

11 γ = 1.0*order*(order+1)

12

13 # Finite element mesh

14 domain = (0.0,L,0.0,H); partition = (2*n,n)

15 model_Ω = CartesianDiscreteModel(

16 domain,partition,isperiodic=(true,false))

17 labels = get_face_labeling(model_Ω)

18 add_tag_from_tags!(labels,"bottom",[1,2,5])

19 add_tag_from_tags!(labels,"beam",[3,4,6])

20

21 # Domains

22 Ω = Interior(model_Ω)

23 Γ = Boundary(model_Ω,tags="beam")

24 Λ = Skeleton(Γ); nΛ = get_normal_vector(Λ)

25 dΩ = Measure(Ω,degree);

26 dΓ = Measure(Γ,degree)

27 dΛ = Measure(Λ,degree)

28

29 # FE spaces

30 reffe = ReferenceFE(lagrangian,Float64,order)

31 V_Ω = TestFESpace(Ω,reffe)

32 V_Γ = TestFESpace(Γ,reffe)

33 U_Ω = TransientTrialFESpace(V_Ω)

34 U_Γ = TransientTrialFESpace(V_Γ)

35 Y = MultiFieldFESpace([V_Ω,V_Γ])

36 X = TransientMultiFieldFESpace([U_Ω,U_Γ])

37

38 # Weak form

39 m((ϕₜₜ,ηₜₜ),(w,v)) = ∫( d₀*ηₜₜ*v )dΓ

40 c((ϕₜ,ηₜ),(w,v)) = ∫( ϕₜ*v - ηₜ*w )dΓ

41 a((ϕ,η),(w,v)) =

42 ∫( ∇(ϕ)⋅∇(w) )dΩ +

43 ∫( g*η*v + Dρ*Δ(η)*Δ(v) )dΓ +

44 ∫( Dρ*(

45 - mean(Δ(η))*jump(∇(v)⋅nΛ) -

46 jump(∇(η)⋅nΛ)*mean(Δ(v)) +

47 γ/h*jump(∇(v)⋅nΛ)*jump(∇(η)⋅nΛ) )

48 )dΛ

49 b((w,v)) = ∫( 0.0 * w )dΩ

50 op = TransientConstantFEOperator(m,c,a,b,X,Y)

51

52 # Initial condition

53 η(x,t) = η₀*cos(k*x[1]-ω*t)

54 ϕ(x,t) =

55 η₀*ω/k*cosh(k*x[2])/sinh(k*H)*sin(k*x[1]-ω*t)

56 η(t::Real) = x->η(x,t); ϕ(t::Real) = x->ϕ(x,t)

57 x₀ = interpolate_everywhere(

58 [ϕ(0.0),η(0.0)],X(0.0))

59 v₀ = interpolate_everywhere(

60 [∂t(ϕ)(0.0),∂t(η)(0.0)],X(0.0))

61 a₀ = interpolate_everywhere(

62 [∂tt(ϕ)(0.0),∂tt(η)(0.0)],X(0.0))

63

64 # Time stepping and Paraview output

65 ode_solver = Newmark(LUSolver(),dt,γ_t,β_t)

66 xₜ = solve(ode_solver,op,(x₀,v₀,a₀),t₀,tf)

67 pvd_Ω = paraview_collection("Ω",append=false)

68 pvd_Γ = paraview_collection("Γ",append=false)

69 for ((ϕₕ,ηₕ),tₙ) in xₜ

70 pvd_Ω[tₙ] = createvtk(

71 Ω,"Ω_$tₙ.vtu",cellfields=["phi"=>ϕₕ])

72 pvd_Γ[tₙ] = createvtk(

73 Γ,"Γ_$tₙ.vtu",cellfields=["eta"=>ηₕ])

74 end

75 vtk_save(pvd_Ω); vtk_save(pvd_Γ)

Figure 3: Implementation of the numerical example in Section 5.2 using Julia and the high-level user interface of Gridap.
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ΓperiodicΓperiodic

Γstr
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Figure 4: Infinite beam geometry definition.

flow expressions:

�((x, y), t) = −
�0!
k�

cosh(k�y)
sinh(k�H)

sin(k�x − !t), (77a)
�((x, y), t) =�0 cos(k�x − !t). (77b)
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Where k� is the wavenumber, ! the wave frequency. With these definitions, it can be seen that the equations (77a)-
(77b) satisfy equations (3) and (8b) when D = �bℎb!2

k4�
. Moreover, if ! = √

gk� tanh(k�H), the kinematic boundary
conditions (4) are also satisfied. Therefore, in this section we use the previous definitions for D and !, with the
remaining parameter values as given in Table 5.2. In Figure 5 we show the velocity potential and surface elevation
fields, �ℎ and �ℎ, at four different times, t = 0.0, T4 ,

T
2 ,

3T
4 , with T ≝ 2�

! the wave period. The results shown in

Table 1
Infinite beam test parameters.

Parameter Symbol Value Units
Water density �w 1.0e3 kg∕m3

Structure density �b 1.0e2 kg∕m3

Structure thickness ℎb 1.0e-2 m
Gravity acceleration g 9.81 m∕s2
Surface elevation �0 0.01 m

Figure 5: From top to bottom: velocity potential and surface elevation (magnified by a factor of 10), �ℎ and �ℎ, at t = 0.0,
t = T

4
, t = T

2
and t = 3T

4
.

Figure 5 have been computed using order r = 4, nx = 20 elements in the horizontal direction, ny = 10 elements in the
vertical direction and a time step size of Δt = T

50 .
5.2.1. Convergence in space

We first assess the convergence rate of the method by evaluating the L2-norm of the solution error for different
mesh sizes and polynomial orders. Given the solution to problem (38) at time tn+1, [�n+1ℎ , �n+1ℎ ], the error of the
potential and surface elevation are

en+1� ≝ ‖�(tn+1) − �n+1ℎ ‖Ω, (78)
en+1� ≝ ‖�(tn+1) − �n+1ℎ ‖Γstr . (79)

In Figure 6 we plot the potential and surface elevation errors, en+1� and en+1� , respectively, with respect to the number
of elements in the horizontal direction. Here we use a uniform mesh with twice the number of elements in horizontal
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direction than in the vertical direction. The wavenumber is set to k� = 15 and we select a very small time step size,
Δt = 1.0e-6, with a final time t = 1.0e-4. The choice of such a small time step is to avoid pollution of the error by the
time discretization, especially for the finest mesh and higher polynomial degree.

As expected, in Figure 6, we see that both errors, e� and e� , converge with the expected order of convergence, i.e.
(ℎk+1) for reference FE of order k.

Figure 6: Evolution of the L2-norm of the potential error e� (left), and surface elevation error e� (right) for different
element sizes and element orders, r = {2, 3, 4}.

In some cases, to reduce the computational burden, one might be tempted to reduce the order of the FE space for
the velocity potential at the interior of the fluid domain and keep a higher order FE space for the surface elevation. The
formulation proposed in this work enables different order of interpolation for the different spaces, as long as the trace
of the FE space of the velocity potential belongs to the FE space of the free surface elevation, as noted in the proof of
proposition 2. Here we stress this case by selecting a 2nd order piece-wise polynomial for ̂ℎ and varying polynomial
order for ̂Γfs,ℎ and ̂Γstr,ℎ. In Figure 7 we see that, even when keeping fixed the polynomial order for the velocity
potential to 2nd order, the order of convergence for the surface elevation is not affected.

Figure 7: Evolution of the L2-norm of surface elevation error e� (right) for different element sizes and element orders,
r = {2, 3, 4}, keeping the order of ̂ℎ fixed to r = 2.

5.2.2. Convergence in time
We use the same setting as defined in sub-section 5.2.1 to assess the convergence properties of the time discretiza-

tion. Here we use a 4th order polynomial space with a mesh of 128 elements in the horizontal direction and 64 in the
vertical direction. Since we want to minimize the spatial error, here we use a wave number of k� = 1. In Figure 8 we
depict the potential and surface elevation errors, e� and e� at t = 1.0 using different time step sizes. Again, Figure 8
shows that the convergence rate of the solution is (Δt2), as prescribed by the Newmark-beta method with the pair of
parameters 
 = 0.5 and � = 0.25.
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Figure 8: Evolution of the L2-norm of the potential error e� (left), and surface elevation error e� (right) for different time
step sizes.

5.2.3. Energy conservation
We also assess the energy conservation properties of the proposed approach. Here we evaluate the relative energy

error, eE ≝ |Etotal − Etotal,h|∕Etotal with Etotal,h the total energy computed using the discrete solution, during 10 wave
periods. That is,a final time t = 10T = 5.18s. The total energy of the initial condition can be computed from the
kinetic, potential and elastic contributions from the velocity potential, free surface elevation and beam deflection, i.e.

Ekin,flow =
1
2
‖∇�‖2Ω =

1
4
g�20L,

Ekin,str =
1
2
d0‖�t‖

2
Γstr =

1
4
d0!

2�20L,

Epot,flow =
1
2
g‖�‖2Γfs∪Γstr =

1
4
g�20L,

Eela,str =
1
2
D�‖Δ�‖2Γstr =

1
4
D�k

4!2�20L,

Etotal ≝Ekin,flow + Ekin,str + Epot,flow + Eela,str =
1
2
g�20L +

1
4
�20L

(

d0!
2 +D�k

4) = 1
2
(g + d0!2)�20L.

We use the same setting as Section 5.2.1 and we select two different cases modifying the time step size and the
mesh size, with:

• case 1: nx = {16, 32, 64, 128}, r = 4 and Δt = 1.0e-3;
• case 2: nx = 128, r = 4, Δt = {10T ∕4, 10T ∕8, 10T ∕16, 10T ∕32, 10T ∕64} with a final time of t = T .

In Figure 9 we depict the evolution of the relative energy error in time for the case 1 (Figure 9 left) and the convergence
of the error with respect to the time step size (Figure 9 right). We see that when refining the mesh the energy error
decreases. We also see that the relative error does not increase as time evolves, denoting that energy is conserved with
the proposed formulation. We note that the oscillatory behaviour in time seen in the figure on the left is caused by the
numerical error introduced by the gradient jump terms appearing in equation (24). This oscillations can be reduced
by increasing the penalty parameter 
 , which is set to 
 = 10.0r(r + 1) in this test. We also see that when refining the
time step size, increasing the order and increasing the number of elements, the total energy error is reduced.
5.2.4. Energy conservation in a finite beam

In the previous subsection we have assessed the energy conservation properties of an infinite floating beam. Here
we extend this analysis to the case where we have a boundary composed by a finite beam and a free surface. To this
end, we use the same periodic setting as in the previous section, but with a beam of size Lb = � located at the center
of the domain. Again, in Figure 10 we see that error is not increasing in time and decreases when we refine the mesh
(left), while it also converges with the expected rate as the time step is decreased (right).
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Figure 9: Relative error, eE , evolution in time for case 1 (left) and error convergence with time step size for case 2 (right).

Figure 10: Relative error, eE , evolution in time for case 1 (left) and error convergence with time step size for case 2 (right).

5.3. Floating beam with elastic joint
Once analysed the behaviour of the proposed formulation in time domain for infinite and finite beams, we now

proceed to assess the formulation for the case of a floating beam with a joint and varying stiffness. Here we will solve
the setting proposed by [28] and also tested by [41] in the frequency domain. The geometry of this test is given in
Figure 11 and the input parameters are defined in Table 2. In this test we use the formulation for floating beams

Figure 11: Sketch with the definition of the geometry used in [28].
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Table 2
Khabakhpasheva et al. test parameters.

Parameter Symbol Value Units
Draft d0 8.1561e-3 m
Structure length L 12.5 m
Fluid domain length Lf 25 m
Tank depth H 1.1 m
Connection location parameter � 0.2 -
Connection rotational stiffness parameter � 0 and 625 -
Structure 1 rigidity D1 47100 N m
Structure 2 rigidity D2 471 N m
Gravity acceleration g 9.81 m∕s2
Wavelength-to-beam length ratio � 0.249 -

defined in (87), with the following kinematic boundary conditions:
n ⋅ ∇� = 0 on Γb, (80a)
n ⋅ ∇� = −!�0

cosh(k�y)
sinh(k�H)

cos(k�x − !t) on Γin, (80b)
n ⋅ ∇� = 0 on Γout. (80c)

Condition (80b) enforces an incoming wave, as defined by (77), on Γin. For this problem an incoming wave length
of � ≝ �L is defined, with � = 0.249, and a wave frequency of ! =

√

gk� tanh(k�H). In addition, we define a
damping zone at the inlet of the tank and at the outlet of the tank of length Ld = L ≈ 4�, where damping terms are
added to the free surface dynamic and kinematic boundary conditions according to [29], resulting in

n ⋅ ∇� = �t + �2(� − �∗) on Γfs, (81a)
�t + g� + �1(∇� ⋅ n − ∇�∗ ⋅ n) = 0 on Γfs. (81b)

With

�1(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�0
[

1 − sin
(

�
2
x
Ld

)]

if xd,in < x,
�0

[

1 − cos
(

�
2
x−xd
Ld

)]

if x > xd,out,
0 otherwise,

�2(x) = k��1(x).

We select �0 = 2.5. The variables �∗ and �∗ are the values that we want to enforce at each damping zone, these are
given by equation (77) at the inlet and zero at the outlet.

The joint rotational stiffness is parametrized by an adimensional parameter, �, such that k� = �D�∕L. We consider
two cases : a first case with a hinge, i.e. � = 0, and a second case with a stiff elastic joint with � = 625. In this test
we use a mesh with elements of 4th order. We define 20 elements through the beam, i.e 80 elements in the horizontal
direction, and 5 elements in the vertical direction with exponential refinement close to the free surface.
5.3.1. Results in frequency domain

The problem sketched in Figure 11 is first solved using the frequency domain approach, as defined in Section 3.3.1.
In Figure 12 we plot the relative surface elevation, �∕�0 along the beam for the two cases, comparing with the results
given by [28] and [41]. We can see that for both cases, � = 0 and � = 635, the results that we obtain with the proposed
monolithic scheme are in very good agreement with the other two works.

In Figures 13 and 14 we show the real, imaginary and absolute values of the velocity potential and surface elevation
fields for the case � = 0 and � = 625, respectively, excluding the damping zones. It is seen that the wave is stretched
under the structure, specially in the most stiffer zone at the left of the joint. We also see that the hinged case, Figure 13,
results in higher reflection at the left of the structure and a smaller transmitted wave amplitude at the right of the
structure compared to the elastic joint, Figure 14.
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Figure 12: Relative surface elevation at the beam for the hinged case, � = 0, (left) and the stiff joint, � = 625, (right).

Figure 13: Velocity potential, �ℎ, and surface elevation, �ℎ, for the case � = 0. Real part (top), imaginary part (center)
and absolute values (bottom). The vertical direction of the domain is scaled 4:1 and the surface elevation is scaled by 40.
The beam region is shadowed in black.

5.3.2. Results in time domain
In this section we solve the floating beamwith elastic joint test in the time domain. Here we will assess the behavior

of the proposed formulation, as given in (91). We use the same setting as defined in the frequency domain case. The
problem is solved for t = [0, 50T ], where T = 2�∕!, with a time step size of Δt = T ∕40.

In Figure 15 we plot the envelope of the normalized absolute value of the beam deflection for the two cases,
� = 0 and � = 624, comparing with results from literature, i.e. [28, 41]. The envelope is computed account-
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Figure 14: Velocity potential, �ℎ, and surface elevation, �ℎ, for the case � = 625. Real part (top), imaginary part (center)
and absolute values (bottom). The vertical direction of the domain is scaled 4:1 and the surface elevation is scaled by 40.
The beam region is shadowed in black.

ing only for the results from t = [25T , 50T ], to avoid the transient effects from the initial stages of the simula-
tion. In the same figure, we also depict the absolute value of the normalized beam deflection at different times,
t = {35.716, 35.895, 36.074, 36.252}, to visualize the beam deformation along time.

Figure 15: Relative surface elevation at the beam for the hinged case, � = 0, (left) and the stiff joint, � = 625, (right).

Again, in Figure 15 we see that the results obtained with the proposed monolithic formulation are in very good
agreement with the results appearing in the literature. We can also clearly observe the effect of the joint and different
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beam rigidities.
In Figures 16 and 17we plot the velocity potential and surface elevation fields at different times, t = 25.2s, 25.6s, 26.0s.

Looking at the color scales of both figures, which are bounded by the overall simulation time maxima and minima,
we can see that the hinged case, � = 0 results in larger wave elevations at the front of the platform. This is caused
by higher reflected wave amplitude, resulting in a smaller transmitted wave. Another phenomena that can be observed
in Figures 16 and 17 is the wave stretching under the platform, where we see that the wavelength is greater than the
incoming wavelength.

Figure 16: Velocity potential, �ℎ, and surface elevation, �ℎ, for the case � = 0 at t = 25.2s (top), t = 25.6s (center) and
t = 26.0s (bottom). The vertical direction of the domain is scaled 4:1 and the surface elevation is scaled by 40. The beam
region is shadowed in black.

5.4. Floating beam in irregular sea bed
In this section we assess the behavior of the proposed approach for a case with non-flat sea bed. We show that the

formulation defined in Section 3 is not limited to the case of constant bathymetry by analysing the test proposed in [34].
In addition, we also demonstrate that the proposed formulation is suitable for domains discretized using unstructured
grids. This is specially relevant for the case of non-constant bathymetry and/or structures with arbitrary shape.

In particular, here we will solve the test case for a floating beam over a sloping seabed. In this case, the bathymetry
is constant over the domain, except for the region where the floating beam is located, where a linearly varying depth
with constant slope of � is considered. Hence, the water depth is given by

Hx(x) =

⎧

⎪

⎨

⎪

⎩

Hl if x ≤ xb,l,
Hl −

x−xb,0
L (Hl −Hr) if xb,l < x < xb,r,

Hr if xb,r≤x.
(82)

Where xb,l is the most left coordinate of the beam and xb,r the beam end point on the right. For clarity, in Figure 18
we plot an sketch of the geometry used in the test.

The same incoming wave conditions as defined in equations (77), together with the damping zones defined in
equations (81) are used in this test, with the only difference of the choice of �0 = 10. The damping regions at the
inlet and outlet are taken as four times the structure length, Ld = 4L. The final set of parameters used for this test are
summarized in Table 3.
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Figure 17: Velocity potential, �ℎ, and surface elevation, �ℎ, for the case � = 625 at t = 25.2s (top), t = 25.6s (center) and
t = 26.0s (bottom). The vertical direction of the domain is scaled 4:1 and the surface elevation is scaled by 40. The beam
region is shadowed in black.

Figure 18: Sketch with the definition of the geometry used in [34].

As previously mentioned, the geometry is discretized with an unstructured grid. We define an element size of
ℎ = L

50 = 6m at the free surface and a characteristic element size of ℎ = L
25 = 12m at the sea bed. A close-up view of

the mesh used around the floating beam is depicted in Figure 19.

Figure 19: Close-up view of the mesh used to solve the Liu et al. test. The vertical direction is scaled 4:1.

In Figure 20 we plot the normalized surface elevation for the cases ! = 0.4 and ! = 0.8. We compare the results
with those reported in [34] for the same cases. It is observed that the results of the proposed monolithic formulation
match very well the results from literature.

To have a better understanding of the behavior of the floating beam, we also plot the real, imaginary and absolute
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Table 3
Liu et al. test parameters.

Parameter Symbol Value Units
Draft d0 0.4878 m
Structure length L 300 m
Fluid domain length Lf 1500 m
Tank depth left side Hl 60 m
Tank depth right side Hr 30 m
Structure rigidity D 1.0e10 N m
Gravity acceleration g 9.81 m∕s2
Wave frequency ! 0.4 and 0.8 rad/s

Figure 20: Relative surface elevation at the beam for the case ! = 0.4 (left) and ! = 0.8 (right).

values of the velocity potential and the surface elevation fields, see Figure 21 for the case ! = 0.4 and Figure 22 for
the case ! = 0.8.

Figure 21: Close-up view of the velocity potential, �ℎ, and surface elevation, �ℎ, for the case ! = 0.4. Real part (top),
imaginary part (center) and absolute values (bottom). The vertical direction of the domain is scaled 4:1 and the surface
elevation is scaled by 1000. The beam region is shadowed in black.

O. Colomés et al.: Preprint submitted to Elsevier Page 28 of 35



A monolithic FE formulation for hydroelastic analysis of VLFS

Figure 22: Close-up view of the velocity potential, �ℎ, and surface elevation, �ℎ, for the case ! = 0.8. Real part (top),
imaginary part (center) and absolute values (bottom). The vertical direction of the domain is scaled 4:1 and the surface
elevation is scaled by 1000. The beam region is shadowed in black.

5.5. Floating plate
Once analysed the formulation for an infinite-dimensional floating beam, we assess the behaviour of the novel

method for the simulation of finite floating thin 2-dimensional structures in 3-dimensional domains. Here we use the
setting used in the test reported in the numerical study of Fu et al. [20], based on the experimental study of Yago et
al. [53] were a scaled mat-like structure model is assessed in a wave tank. In Table 4 we summarize the parameter
values used in this test.
Table 4
Yago et al. test parameters.

Parameter Symbol Value Units
Structure length L 300 m
Structure width B 60 m
Structure height ℎb 2 m
Structure density �b 256.25 kg∕m3

Structure Draft d0 0.5 m
Structure Young modulus E 1.19e10 Pa
Structure Poisson coefficient � 0.13 −
Tank length 2Ld + Lf 3000 m
Tank width Bf 840 m
Tank depth H 58.5 m
Gravity acceleration g 9.81 m∕s2
Wavelength � 0.4L, 0.6L and 0.8L m

The computational domain, sketched in Figure 23, has size (2Ld + Lf ) × Bf × H , with the front edge of the
structure located at a distance 4.5L from the inlet, and the plate side edges at a distance 6.5B from the left wall of the
tank. At the inlet and outlet of the tank we define a damping region of length Ld = 4� with the same damping terms
as described in equation (81). In this case, we select �0 = 6.0 and the variables �∗ and �∗ are given by equation (83)
at the inlet and zero at the outlet.

�((x, y, z), t) = −
�0!
k�

cosh(k�z)
sinh(k�H)

sin(k�x − !t), (83a)
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Figure 23: Sketch with the definition of the geometry used in the floating plate test.

�((x, y, z), t) =�0 cos(k�x − !t). (83b)
In this test we use a different composition of the FE spaces for the potential and surface elevation. In order to

reduce the overall computational time, we use Lagrange polynomials of order 2 for the potential FE space, ̂ℎ, and 4thorder Lagrange polynomials for the surface elevation FE space, ̂Γ,ℎ. We use 32 elements through the x-direction of
the plate, i.e. 320 elements in total in the x-direction of the domain, 4 elements in the y-direction of the plate, resulting
in 56 elements in the y-direction of the domain, and 4 elements in the vertical direction with exponential refinement
close to the free surface.

Looking at the relative surface elevation at the centerline of the plate shown in Figure 24, we see that the proposed
approach is in good agreement with the numerical results of Fu et al. [20]. This is the case for the three wave settings
� = 0.4L, � = 0.6L and � = 0.8L. In Figure 25 we depict the real, imaginary and absolute value of the surface
elevation for the case � = 0.4L.

6. Conclusions
In this manuscript we present a novel monolithic FE formulation for the hydroelastic analysis of thin floating

structures that can be described by the Euler-Bernoulli beam theory, for the 2-dimensional case, or by the Poisson-
Kirchhoff plate theory. We define the new formulation for both, C1 and C0 FE spaces. The later uses a continu-
ous/discontinuous Galerkin approach for the displacements and rotations, respectively, resulting in consistent, stable
and energy-conserving formulations. We show a practical implementation of the monolithic formulation in the pure
Julia library Gridap.jl. We have shown that the statements proven in the numerical analysis section are supported by
the numerical results. We also see that the method proposed in this manuscripts leads to results that are in good agree-
ment with other experimental and numerical works in the literature. We test the method for a wide variety of cases,
including 2 and 3-dimensional geometries, structures with elastic joints or domains with variable bathymetry.
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Figure 24: Relative surface elevation at the plate centerline for the case � = 0.4L (top left), � = 0.6L (top right) and
� = 0.8L (bottom).

Appendix A. Formulation for the floating Euler-Bernoulli beam
Weak form

Following the same steps as described in Section 3.1, one can derive the weak form for the 2-dimensional case,
where the floating structure is modeled as a 1-dimensional Euler-Bernoulli beam. In that case, the equivalent bilinear
form to (17) would read

BEB([�, �], [w, v]) ≝(∇�,∇w)Ω − (�t, w)Γfs∪Γstr (84)
+�

(

�t + g�, �fw + v
)

Γfs +
(

d0�tt + �t + g�, v
)

Γstr +
(

D�Δ�,Δv
)

Γstr .

Equivalently, the bilinear form for a structure with joints is given by
Bj,EB([�, �], [w, v]) ≝BEB([�, �], [w, v]) +

(

k�[[∇� ⋅ nΛ]], [[∇v ⋅ nΛ]]
)

Λj . (85)

Spatial discretization
The equivalent semi-discrete problem using a C/DG formulation for the case of a floating Euler-Bernoulli beam

reads: find [�ℎ, �ℎ] ∈ ̂ℎ × ̂Γ,ℎ such that
B̂ℎ,EB([�ℎ, �ℎ], [wℎ, vℎ]) = Lℎ([wℎ, vℎ]) ∀[wℎ, vℎ] ∈ ̂ℎ × ̂Γ,ℎ. (86)

Where
B̂ℎ,EB([�ℎ, �ℎ], [wℎ, vℎ]) ≝(∇�ℎ,∇wℎ)Ωℎ − (�ℎ,t, wℎ)Γfs,ℎ∪Γstr,ℎ (87)

+�
(

�ℎ,t + g�ℎ, �fwℎ + vℎ
)

Γfs,ℎ +
(

d0�ℎ,tt + �ℎ,t + g�ℎ, vℎ
)

Γstr,ℎ
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Figure 25: Surface elevation, �ℎ and �ℎ, for the case � = 0.4L. Real part (top), imaginary part (center) and absolute
values (bottom). The plate boundaries are marked in white.
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+
(

D�Δ�ℎ,Δvℎ
)

Γstr,ℎ +
(

k�[[∇�ℎ ⋅ nΛ]], [[∇vℎ ⋅ nΛ]]
)

Λj
−
(

⟨D�Δ�ℎ⟩, [[∇vℎ ⋅ nΛ]]
)

Λstr,ℎ −
(

[[∇�ℎ ⋅ nΛ]], ⟨D�Δvℎ⟩
)

Λstr,ℎ
+


ℎ
(

[[D�∇�ℎ ⋅ nΛ]], [[∇vℎ ⋅ nΛ]]
)

Λstr,ℎ .

Time discretization
The equivalent fully discrete problem in the frequency domain, as it has been defined in Section 3.3.1, for the case of

a 1-dimensional floating Euler-Bernoulli beam in a 2-dimensional domain would be given by: find [�ℎ, �ℎ] ∈ ̂!ℎ ×̂
!
Γ,ℎsuch that

B̂!ℎ,EB([�ℎ, �ℎ], [wℎ, vℎ]) = L
!
ℎ ([wℎ, vℎ]) ∀[wℎ, vℎ] ∈ ̂!ℎ × ̂!Γ,ℎ. (88)

With
B̂!ℎ,EB([�ℎ, �ℎ], [wℎ, vℎ]) ≝(∇�ℎ,∇wℎ)Ωℎ + (i!�ℎ, wℎ)Γfs,ℎ∪Γstr,ℎ (89)

+�
(

g�ℎ − i!�ℎ, �!fwℎ + vℎ
)

Γfs,ℎ
+
(

(g − !2d0)�ℎ − i!�ℎ, vℎ
)

Γstr,ℎ
+
(

D�Δ�ℎ,Δvℎ
)

Γstr,ℎ +
(

k�[[∇�ℎ ⋅ nΛ]], [[∇vℎ ⋅ nΛ]]
)

Λj

−
(

⟨D�Δ�ℎ⟩, [[∇vℎ ⋅ nΛstr,ℎ ]]
)

Λstr,ℎ
−
(

[[D�∇�ℎ ⋅ nΛstr,ℎ ]], ⟨Δv⟩
)

Λstr,ℎ
+


ℎ

(

[[D�∇�ℎ ⋅ nΛstr,ℎ ]], [[∇vℎ ⋅ nΛstr,ℎ ]]
)

Λstr,ℎ
.

Alternatively, the fully discrete problem in the time domain, as it has been defined in Section 3.3.2, for the case
of a 1-dimensional floating Euler-Bernoulli beam in a 2-dimensional domain would be given by: find [�n+1ℎ , �n+1ℎ ] ∈
̂ℎ × ̂Γ,ℎ such that

B̂n+1ℎ,EB([�
n+1
ℎ , �n+1ℎ ], [wℎ, vℎ]) = Ln+1ℎ ([wℎ, vℎ]) ∀[wℎ, vℎ] ∈ ̂ℎ × ̂Γ,ℎ. (90)

Where
B̂n+1ℎ,EB([�

n+1
ℎ , �n+1ℎ ], [wℎ, vℎ]) ≝(∇�n+1ℎ ,∇wℎ)Ωℎ − (�t�

n+1
ℎ , wℎ)Γfs,ℎ∪Γstr,ℎ (91)

+�
(

�t�
n+1
ℎ + g�n+1ℎ , �fwℎ + vℎ

)

Γfs,ℎ +
(

�ttd0�
n+1
ℎ + �t�n+1ℎ + g�n+1ℎ , vℎ

)

Γstr,ℎ
+
(

D�Δ�n+1ℎ ,Δvℎ
)

Γstr,ℎ +
(

k�[[∇�n+1ℎ ⋅ nΛ]], [[∇vℎ ⋅ nΛ]]
)

Λj
−
(

⟨D�Δ�n+1ℎ ⟩, [[∇vℎ ⋅ nΛ]]
)

Λstr,ℎ −
(

[[D�∇�n+1ℎ ⋅ nΛ]], ⟨Δv⟩
)

Λstr,ℎ
+


ℎ
(

[[D�∇�n+1ℎ ⋅ nΛ]], [[∇vℎ ⋅ nΛ]]
)

Λstr,ℎ .
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